You are here:

Journal of Polymer and Biopolymer Physics Chemistry

ISSN (Print): 2373-3403

ISSN (Online): 2373-3411


Content: Volume 2, Issue 2


Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures

1Laboratorio de Membranas, Instituto de Física Aplicada, CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, San Luis, Argentina

Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(2), 37-43
DOI: 10.12691/jpbpc-2-2-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Martin Alberto Masuelli. Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(2):37-43. doi: 10.12691/jpbpc-2-2-2.

Correspondence to: Martin  Alberto Masuelli, Laboratorio de Membranas, Instituto de Física Aplicada, CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, San Luis, Argentina. Email:


The intrinsic viscosity measurements used to calculate the Mark-Houwink (M-H) parameters are generally performed for different molecular weights at a constant temperature, with the standard value of this temperature being 25°C, or else 37°C in the case of mammalian proteins, or else under theta conditions for polymers and biopolymers. In the polymer industry, polysaccharides and proteins must circulate through pipes during transport processes where pumps have a very high-energy expenditure and where temperatures must be greatly increased, and at this point calculation of the Mark-Houwink parameters becomes important. The M-H parameters are calculated at standardized temperatures and in many cases, these are not useful because of the errors they carry, and it then becomes very difficult to calculate the molecular weight. It is therefore necessary to know the change in molecular weight as evidence of a change in the product obtained, as this may create a need to halt the production process, transport, or extrusion. The basic criterion is that the molecular weight does not change with temperature, or at least within one discrete range of temperatures, but that there is hydrodynamic change (intrinsic viscosity). The method is simple and requires iterative mathematical processing and measurement of intrinsic viscosity at different temperatures.



[1]  Haurowitz, F. The Chemistry and Functions of Proteins, Academic Press, 1963.
[2]  Matsuoka, S.; Cowman, M.K. 2002. Equation of state for polymer solution. Polymer 43, 3447-3453.
[3]  van Holde, K.E. Physical Biochemistry, Foundations of Modern Biochemistry Series, Prentice-Hall, 1971.
[4]  Sun, S.F. Physical chemistry of Macromolecules. John Wiley & Sons, 2004.
[5]  Teraoka, Iwao. Polymer Solutions: An Introduction to Physical Properties. John Wiley & Sons, 2002.
Show More References
6]  Utracki, L.; Simha, Robert. Molecular Weight and Temperature Dependence of Intrinsic Viscosities in very Poor Solvents. J. Phys. Chem. 1963; 67: 1056-1061.
7]  Dohmen, Monique P. J.; Pereira, Ana M.; Timmer, J. Martin K.; Benes, Nieck E.; Keurentjes, Jos T. F. Hydrodynamic Radii of Polyethylene Glycols in Different Solvents Determined from Viscosity Measurements. J. Chem. Eng. Data 2008; 53: 63-65.
8]  Rahmat Sadeghi, Mohammed Taghi Zafarani-Moattar. Thermodynamics of aqueous solutions of polyvinylpyrrolidone. J. Chem. Thermodynamics 2004; 36: 665-670.
9]  Guner A. Unperturbed dimensions and theta temperature of dextran in aqueous solutions. Journal of Applied Polymer Science 1999; 72: 871-876.
10]  Catiker Efkan, Guner Ali. Unperturbed dimensions and the theta temperature of dextran in ethylene glycol solutions. European Polymer Journal 2000; 36: 2143-2146.
11]  Kasaai, Mohammad R. Calculation of Mark-Houwink-Sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscometric constants data. Carbohydrate Polymers 2007; 68: 477-488.
12]  Rong Huei Chen, Wei Yu Chen, Shang Ta Wang, Chu Hsi Hsu, Min Lang Tsai. Changes in the Mark-Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths. Carbohydrate Polymers 2009; 78: 902-907.
13]  Rong Huei Chen, Min Larng Tsai. Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. International Journal of Biological Macromolecules 1998; 23: 135-141.
14]  Masuelli, Martin Alberto. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. International Journal of Biological Macromolecules 2011; 48: 286-291.
15]  Huggins M.L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. J. Am. Chem. Soc. 1942; 64, 11: 2716-2718.
16]  Staudinger, H. Die hochmolekularen organischen Verbindungen. Berlin: Julius Springer, 1932.
17]  Mark, H. in Der feste Körper (ed. Sänger, R.), 65-104 (Hirzel, Leipzig, 1938).
18]  Houwink, R. Zusammenhang zwischen viscosimetrisch und osmotisch bestimm-ten polymerisationsgraden bei hochpolymeren. J. Prakt. Chem. 1940; 157: 15.
19]  García de la Torre, J.; Carrasco, B. Universal size-independent quantities for the conformational characterization of rigid and flexible macromolecules. Progress in Colloid Polymers Science 1999; 113: 81-86.
20]  Harding, Stephen E. The Viscosity Intrinsic of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysical Molecules Biological 1997; 68: 207-262.
21]  Flory, P.J; Leutner, F.S. “Occurrence of Head-to-Head Arrangements of Structural Units in Polyvinyl Alcohol”, J. Polym. Sci. 1948; 3: 880.
22]  Carather Jr., C.E. Generation of Poly (vinyl alcohol) and Arrangement of Structural Units, J. Chem. Edu. 1978; 55: 473-475.
23]  Rehana Saeed, Fahim Uddin, Arshad Fazal. Effect of Electrolyte Concentration on Viscous Flow of Polymer Solutions. J. Chem. Eng. Data 2002; 47: 1359-1362.
24]  Misra, G. S., Mukherjee, P. K. The relation between the molecular weight and intrinsic viscosity of polyvinyl alcohol. Colloid & Polymer Sci. 1980; 258: 152-155.
25]  Tinland, B.; Rinaudo, M. Dependence of the Stiffness of the Xanthan Chain on the External Salt Concentration. Macromolecules 1989; 22: 1863-1865.
26]  Masuelli, Martin Alberto & Sansone, Maria Gabriela. Hydrodynamic properties of Gelatin. Studies from intrinsic viscosity measurements. Chapter 5 of book: Biopolymers, INTECH, 2012, ISBN 979-953-307-229-5, Croatia.
27]  Pouradier, J. & Venet, M. Contribution a l'etude de la structure des gélatines V.-Dégradation de la gélatine en solution isoélectrique, Journal de Chimie Physique et de Physico-Chimie Biologique 1952; 49: 85-91.
28]  Bohidar, H.B. Hydrodynamic properties of gelatin in dilute solutions. International Journal of Biological Macromolecules 1998; 23: 1-6.
29]  Gomez-Estaca, J., Montero, P., Fernandez-Martin, F., & Gomez-Guillen, M. C. (2009). Physico-chemical and film forming properties of bovine-hide and tuna-skin gelatin: a comparative study. Journal of Food Engineering, 2009, 90, 4: 480-486.
30]  Zhao, W. B. Gelatin. Polymer Data Handbook. Oxford University Press, 1999.
31]  Qing Shen, Di Mu, Li-Wei Yu, Liang Chen. A simplified approach for evaluation of the polarity parameters for polymer using the K coefficient of the Mark-Houwink-Sakurada equation. Journal of Colloid and Interface Science 2004; 275: 30-34.
32]  Masuelli, Martin Alberto. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Advances in Physical Chemistry, Volume 2013, Article ID 360239, 8 p.
33]  Masuelli, Martin A.; Takara, Andres; Acosta, Adolfo. Hydrodynamic properties of tragacanthin. Study of temperature influence. The Journal of the Argentine Chemical Society, 2013, 100: 25-34.
34]  Masuelli, Martin A. Hydrodynamic properties of whole arabic gum. American Journal of Food Science and Technology, 2013, 1, 3: 60-66.
35]  Masuelli, Martin Alberto. Dextrans in Aqueous Solution. Experimental Review on Intrinsic Viscosity Measurements and Temperature Effect. Journal of Polymer and Biopolymer Physics Chemistry, 2013, 1, 1: 13-21.
36]  Masuelli, Martin Alberto & Illanes, Cristian Omar. Review of the characterization of sodium alginate by intrinsic viscosity measurements. Comparative analysis between conventional and single point methods. International Journal of BioMaterials Science and Engineering, 2014, 1, 1: 1-11.
Show Less References


Nuclear Waste Reduction Using Molecularly Imprinted Polymers

1University of Pittsburgh, USA

Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(2), 29-36
DOI: 10.12691/jpbpc-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Joe Nero, Jon Bartczak. Nuclear Waste Reduction Using Molecularly Imprinted Polymers. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(2):29-36. doi: 10.12691/jpbpc-2-2-1.

Correspondence to: Jon  Bartczak, University of Pittsburgh, USA. Email:


Nuclear power accounts for just over twenty percent of America’s electrical output and does not contribute to greenhouse gas emissions. Unfortunately, nuclear power does produce a deleterious by-product known as radioactive waste. One of the primary goals of nuclear power proponents is the development of methods that reduce the volume of radioactive waste, such as cobalt. Radioactive cobalt is usually accompanied by non-radioactive iron, making it more difficult to solely extract the harmful cobalt atoms. The application of molecularly imprinted polymers and chitosans increase the effectiveness of the removal of radioactive cobalt from cooling medium in order to reduce the overall volume of nuclear waste by having a high selectivity for the radioactive cobalt ions even in the presence of similar particles. This method’s efficacy will be analyzed and compared to the current procedures for removing radioactive cobalt from cooling medium. A relevant explanation of a nuclear reactor’s inner workings, radioactive waste formation, along with societal implications of cleaner nuclear power, and the benefits of its successful implementation, will also be discussed.



[1]  P. Hodgeson. (2008, October). “Nuclear Power and the Energy Crisis.” First Principles. [Online.] Available:
[2]  P. Hodgeson. (2008, October). “The Energy Crisis” First Principles. [Online.] Available:
[3]  M. Jason. (2012, Feb 10). “Energy Density and Waste Comparison of Energy Production.” Nuclear Fissionary. [Online Article]. Available:
[4]  J. Wiley. “Nuclear Fission Basics” [Online].
[5]  B. Cohen. (2012, March). “Risks of Nuclear Power.”
Show More References
6]  A. Bhaskarapillai, S. Narashima, B. Sellergren. (2009, April). “Synthesis and Characterization of Imprinted Polymers for Radioactive Waste Reduction.” Industrial and Engineering Chemistry Research. [Online]. Available:
7]  D. D. Ebbing, S. D. Gammon. (2009). General Chemistry: Ninth edition. Belmont, Ca: Brooks/Cole. Page 821-857.
8]  (2011, August). “Radiation Basics.” Health Physics Society. [Online]. Available:
9]  (2012, January 22). “Nuclear Dawn.” The Economist [Online]. Available:
10]  A. Martin-Esteban. (2010, September). “Molecular Imprinting.” Sciverse. [Online].
11]  “Polymer Structure” Case Western Reserve University. [Online]. Available:
12]  N. Lemcoff, S. Zimmerman. (2004, May). “Synthetic Hosts Via Molecular Imprinting—are Universal Synthetic Antibodies Realistically Possible?” Chem. Comm. [Online]. Available:
13]  D. Blauch. (2009). “Elemental Analysis: Carbon and Hydrogen.” Davidson College. [Online]. Available:
14]  B. Tissue. (2012, March). “Atomic Absorption Spectroscopy.” Virginia Technical Institute. [Online]. Available:
15]  S. Luca. “Flame Photometry.” Standard Base. [Online]. Available:
16]  (2008) “Chain-Growth Polymerization.” Steinwall Inc. [Online]. Available:
17]  N. Abdul, B. Anupkumar, V. Sankaralingam, N. Sevilimedu. (2012, March). “Cobalt Imprinted Chitosan for Selective Removal of Cobalt During Nuclear Reactor Decontamination.” Carbohydrate Polymers. [Online]. Available:
18]  A.Azapagic, C. Greenhalgh. (2009, December). “Review of Drivers and Barriers for Nuclear Power in the UK.” Environmental Science and Policy. [Online]. Available:
19]  L. Warren. (1998, September). “Public Perception of Radioactive Wastes.” Interdisciplinary Science Revies. [Online]. Available:,
Show Less References