Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: http://www.sciepub.com/journal/jpbpc Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Go
Journal of Polymer and Biopolymer Physics Chemistry. 2018, 6(1), 31-38
DOI: 10.12691/jpbpc-6-1-4
Open AccessArticle

A Molecular Dynamics Simulation Study on the Miscibility of Polyglycolide with Polyacrylonitrile

Mahamat Bichara Abderaman1, 2, , Kharouna Talla1, El-Hadji Oumar Gueye1, Abdoulaye Ndiaye Dione1, Omar Faye1, 3 and Aboubaker Chedikh Beye1

1Department of Physics, Faculty of Science and Technics, Cheikh Anta Diop University, Dakar, Senegal

2Departement of Chemical Engineering, Higher National Petroleum Institute Of Mao, Mao, Chad

3Department of Mechanical Engineering and College of Engineering, University of Saskatchewan, Saskatchewan, Canada

Pub. Date: October 19, 2018

Cite this paper:
Mahamat Bichara Abderaman, Kharouna Talla, El-Hadji Oumar Gueye, Abdoulaye Ndiaye Dione, Omar Faye and Aboubaker Chedikh Beye. A Molecular Dynamics Simulation Study on the Miscibility of Polyglycolide with Polyacrylonitrile. Journal of Polymer and Biopolymer Physics Chemistry. 2018; 6(1):31-38. doi: 10.12691/jpbpc-6-1-4

Abstract

Atomistic molecular dynamics and mesoscopic dynamics simulations are used to study the miscibility of polyglycolide (PGA) blended with polyacrylonitrile (PAN). Seven PGA/PAN blends (with weight ratios of 90/10, 80/20, 70/30, 60/40 and 50/50), as well as pure PGA and PAN, are examined. The Flory Huggins parameters, phase diagrams, radial distribution function, free energy, and order parameters are computed for different blends using atomistic simulations to predict blend miscibility. The simulation results show that the PGA/PAN blends have good miscibility for all the weight ratios investigated. This is further supported by the morphologies of PGA/PAN blends. The phase separation kinetics of PGA/PAN blends is then examined using density profiles calculated from the Mesodyn approach to examine the mesoscopic morphology of the blends. The results strengthen the conclusion that the blends can be miscible in the above-mentioned range of ratios, in agreement with those found in the literature.

Keywords:
polyglycolide polyacrylonitrile miscibility molecular dynamics blend

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  SCHWARZ, Karsten et EPPLE, Matthias. A detailed characterization of polyglycolide prepared by solid-state polycondensation reaction. Macromolecular Chemistry and Physics, 1999, vol. 200, no 10, p. 2221-2229.
 
[2]  NAIR, Lakshmi S. et LAURENCIN, Cato T. Biodegradable polymers as biomaterials. Progress in polymer science, 2007, vol. 32, no 8-9, p. 762-798.
 
[3]  Jacobsen, S., Degee, Ph., Fritz, H.G., Dubois, Ph & Jerome, R. Polylactide (PLA)-a new way of production. Polym. Eng. Sci. 39, 1311-1319 (1999).
 
[4]  YAMANE, Kazuyuki, SATO, Hiroyuki, ICHIKAWA, ukio, et al. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polymer Journal, 2014, vol. 46, no 11, p. 769.
 
[5]  BASHIR, Z. Polyacrylonitrile, an unusual linear homopolymer with two glass transitions. Indian Journal of Fibre & Textile Research vol. 24, March 1999, pp 1-9.
 
[6]  MATARAM, Agung, NASUTION, Syahrul, WIJAYA, Mazari Legi, et al. Physical and mechanical properties of membrane Polyacrylonitrile. In : MATEC Web of Conferences. EDP Sciences, 2017. p. 01010.
 
[7]  UTRACKI, Leszek A. Compatibilization of polymer blends. The Canadian journal of chemical Engineering, 2002, vol. 80, no 6, p. 1008-1016.
 
[8]  Inger M. A., Emilio M., Borja C. Polymer, 51 (2010) 4431-4438.
 
[9]  SINGH, Y. P. and SINGH, R. P. Compatibility studies on solutions of polymer blends by viscometric and ultrasonic. European Polymer Journal, 1983, vol. 19, no 6, p. 535-541.
 
[10]  HALIMATUDAHLIANA, A., ISMAIL, H., et NASIR, M. Morphological studies of uncompatibilized and compatibilized polystyrene/polypropylene blend. Polymer Testing, 2002, vol. 21, no 3, p. 263-267.
 
[11]  HEMSRI, Sudsiri, THONGPIN, Chanchai, MORADOKPERMPOON, Narongsuk, et al. Mechanical properties and thermal stability of poly (butylene succinate)/acrylonitrile butadiene rubber blend. In : Macromolecular Symposia. 2015. p. 145-154.
 
[12]  Patel SK, Lavasanifar A, Choi P. Prediction of the solubility of cucurbitacin drugs in self-associating poly (ethylene oxide)-b-poly (α-benzyl carboxylate ɛ-caprolactone) block copolymer with different tacticities using molecular dynamics simulation. Biomaterials. 2013; 31(2):345-357.
 
[13]  Koski J, Chao H, Riggleman RA. Field theoretic simulations of polymer nanocomposites. J Chem Phys. 2013; 139(24):244911.
 
[14]  Lang M. Monomer fluctuations and the distribution of residual bond orientations in polymer networks. Macromolecules. 2013; 46(24): 9782-9797.
 
[15]  Bulacu M, van der Giessen E. Molecular-dynamics simulation study of the glass transition in amorphous polymers with controlled chain stiffness. Rhys Rev E. 2007; 76(1):11807.
 
[16]  Kravchenko OG, Li C, Strachan A, et al. Prediction of the chemical and thermal shrinkage in a thermoset polymer. Composites: Part A. 2014; 66:35-43.
 
[17]  Feng Y, Ning N, Zhao Q, et al. Role of block copolymer morphology on particle percolation of polymer nanocomposites. Soft matter. 2014; 10(41):8236–8244.
 
[18]  Hur K, Winkler RG, Yoon DY. Comparison of ring and linear polyethylene from molecular dynamics simulations. Macromolecules. 2006; 39(12):3975-3977.
 
[19]  RISSANOU, Anastassia N. et HARMANDARIS, Vagelis. Dynamics of various polymer–graphene interfacial systems through atomistic molecular dynamics simulations. Soft Matter, 2014, vol. 10, no 16, p. 2876-2888.
 
[20]  ESLAMI, Hossein et BEHROUZ, Marzieh. Molecular dynamics simulation of a polyamide-66/carbon nanotube nanocomposite. The Journal of Physical Chemistry C, 2014, vol. 118, no 18, p. 9841-9851.
 
[21]  LI, Yi, WU, Youping, LUO, Yanlong, et al. A combined experimental and molecular dynamics simulation study on the structures and properties of three types of styrene butadiene rubber. Materials Today Communications, 2015, vol. 4, p. 35-41.
 
[22]  ABDERAMAN, Mahamat Bichara, GUEYE, El-Hadji Oumar, DIONE, Abdoulaye Ndiaye, et al. A Molecular Dynamics Study on the Miscibility of Polyglycolide with Different Polymers. International Journal of Materials Science and Applications, 2018, vol. 7, no 4, p. 126.
 
[23]  FRAZZA, E. J. et SCHMITT, E. E. A new absorbable suture. Journal of biomedical materials research, 1971, vol. 5, no 2, p. 43-58.
 
[24]  BORMASHENKO, Edward, SHESHNEV, Avigdor, POGREB, Roman, et al. Study of water diffusion in polyacrylonitrile using IR fiber optic evanescent wave spectroscopy. Polymers for Advanced Technologies, 2002, vol. 13, no 10-12, p. 1039-1045.
 
[25]  CHUJO, K., KOBAYASHI, H., SUZUKI, J., et al. Physical and chemical characteristics polyglycolide. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1967, vol. 100, no 1, p. 267-270.
 
[26]  SLADE, P. E. The melting of polyacrylonitrile. Thermochimica Acta, 1970, vol. 1, no 5, p. 459-463.
 
[27]  FU, Yizheng, LIAO, Liqiong, LAN, Yanhua, et al. Molecular dynamics and mesoscopic dynamics simulations for prediction of miscibility in polypropylene/polyamide-11 blends. Journal of Molecular Structure, 2012, vol. 1012, p. 113-118.
 
[28]  CASE, F. H. et HONEYCUTT, J. D. Will My Polymers Mix?" Methods for Studying Polymer Miscibility. Trends Polym. Sci., 1994, vol. 2, no 8, p. 259-266.
 
[29]  K. F. Freed, J. Phys. A: Math. Theor., 1985, 18, 871.
 
[30]  K. S. Schweizer and J. G. Curro, J. Chem. Phys., 1989, 91, 5059.
 
[31]  C. F. Fan, B. D. Olafson. and M. Blanco, Macromolecules, 1992, 25, 3667-3676.
 
[32]  Flory, Paul J. Principles of polymer chemistry. Cornell University Press, 1953.
 
[33]  FRAAIJE, J. G. E. M., VAN VLIMMEREN, B. A. C., MAURITS, N. M., et al. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. The Journal of chemical physics, 1997, vol. 106, no 10, p. 4260-4269.
 
[34]  FAN, Cun Feng, CAGIN, Tahir, CHEN, Zhuo Min, et al. Molecular modeling of polycarbonate. 1. Force field, static structure, and mechanical properties. Macromolecules, 1994, vol. 27, no 9, p. 2383-2391.
 
[35]  BHOWMICK, A. K., KUO, C. C., MANZUR, A., et al. Properties of cis-and trans-polyisoprene blends. Journal of Macromolecular Science-Physics, 1986, vol. 25, no 3, p. 283-306.
 
[36]  KRAUSE, Sonja. Polymer–polymer compatibility. In: Polymer Blends, Volume 1. 1978. p. 15-113.
 
[37]  LUO, Zhonglin et JIANG, Jianwen. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly (ethylene oxide)/poly (vinyl chloride) blends. Polymer, 2010, vol. 51, no 1, p. 291-299.
 
[38]  ZHANG, Wenqing, QING, Yang, ZHONG, Weihong, et al.Mechanism of modulus improvement for epoxy resin matrices: A molecular dynamics simulation. Reactive and Functional Polymers, 2017, vol. 111, p. 60-67.
 
[39]  ALTEVOGT, Peter, EVERS, Olaf A., FRAAIJE, Johannes GEM, et al. The MesoDyn project: software for mesoscale chemical engineering. Journal of Molecular Structure: THEOCHEM, 1999, vol. 463, no 1-2, p. 139-143.
 
[40]  JAWALKAR, Sheetal S. et AMINABHAVI, Tejraj M. Molecular modeling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly (l-lactide) and poly (vinyl alcohol) blends. Polymer, 2006, vol. 47, no 23, p. 8061-807.