Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: http://www.sciepub.com/journal/jpbpc Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Go
Journal of Polymer and Biopolymer Physics Chemistry. 2018, 6(1), 1-12
DOI: 10.12691/jpbpc-6-1-1
Open AccessArticle

Branched Copolymer Based on Glycerol, Ethylene Glycol and Adipic Acid, Linear Copolymer Based on Lactic Acid, Ethylene Glycol and Succinic Acid: Thermal and Microbial Degradation Comparatives Studies

A. Benarbia1, , A. Elidrissi1 and Asehraou Abdeslam2

1LCAE-URAC18: Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohammed the First – Oujda, Morocco

2Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

Pub. Date: June 29, 2018

Cite this paper:
A. Benarbia, A. Elidrissi and Asehraou Abdeslam. Branched Copolymer Based on Glycerol, Ethylene Glycol and Adipic Acid, Linear Copolymer Based on Lactic Acid, Ethylene Glycol and Succinic Acid: Thermal and Microbial Degradation Comparatives Studies. Journal of Polymer and Biopolymer Physics Chemistry. 2018; 6(1):1-12. doi: 10.12691/jpbpc-6-1-1

Abstract

In this work, we aim compare the thermal and microbial degradation of two copolyesters a Branched copolyester Based on Glycerol, Ethylene Glycol and Adipic acid COP B [27] and a linear copolyester based on Lactic Acid, Ethylene Glycol and Succinic Acid COP L [2]. The quantitative and qualitative biodegradation phenomenon of the prepared copolyesters studied using two selected strains of Aspergillus sp S1 and Penicillium sp S2. The mechanism illustrating this process was proposed. The mean of the apparent activation energy (Ea) of COP L is biggest than noted for COP B. In case of the biomass growth obtained for Aspergillus sp S2 and Penicillium sp S1 a high increase of biomass was observed for COP B. The branched biodegradable copolyester exhibit potential to replace linear biodegradable copolyester.

Keywords:
copolyester thermal degradation biodegradation Aspergillus Penicillium

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Muller R.J., Keeberg I., Deckwer W.D. Chemosphere. 44 (2001) 289.
 
[2]  Benarbia, A., Elidrissi, A., Ganetri, I., Touzani, R, “Synthesis, characterization and thermal degradation kinetics of Copolyesters”. J. Mater. Environ. Sci. 5(4).1262-1279. March 2014.
 
[3]  Tomalia DA, Naylor AM, Goddard WA. Angew Chem 1990; 102:119. [6] Frechet JMJ. Science 1994; 263: 1710.
 
[4]  Ankur, S., Kulshrestha, Gao,W., Fu, H. and Richard, A.G, “Synthesis and characterization of branched polymers from lipasecatalyzed trimethylolpropane copolymerizations”, Biomacromolecules, 8(6). 1794-1801. May 2007.
 
[5]  Mickaël, A., Stéphanie, D., Sinisa, M., Boris, E. and Véronique, N.R, “Characterization, stability and ecotoxic properties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol”, Polymer Degradation and Stability. 97(10). 1956-1963. March 2012.
 
[6]  Bruggeman, J.P., Bettinger, C.J., Nijst, C.L.E., Kohane, D.S. and Langer, R,“Biodegradable Xylitol Based Polymers”, Advanced Materials. 20(7). 1922-1927. 2008.
 
[7]  Barret, D.G., Luo, W. and Yousaf, M.N, “Aliphatic polyester elastomers derived from erythritol and alpha, omega-diacids”, Polymer Chemistry. 1(3). 296-302.January 2010.
 
[8]  Cao, H., Zheng, Y., Zhou, J., Wang, W. and Pandit, A, “A novel hyperbranched polyester made from aconitic acid (B3) and di(ethylene glycol) (A2)”. Polymer International. 60(4). 630-634. April 2011.
 
[9]  Yang, Y., Lu, W., Cai, J., Hou, Y., Ouyang, S., Xie, W. and Gross, R, “Poly (oleic diacid-co-glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis”. Macromolecules. 44(7). 1977-1985. March 2011.
 
[10]  Yang, Y., Lu, W., Cai, J., Hou, Y., Ouyang, S., Xie, W. and Gross, R, “Poly (oleic diacid-co-glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis”. Macromolecules. 44(7). 1977-1985. March 2011.
 
[11]  Kulshrestha , S., Bishwabhusan , S., Wei , G., Hongyong , F. and Gross, A, “Lipase Catalysis. A Direct Route to Linear Aliphatic Copolyesters of Bis(hydroxymethyl)butyric Acid with Pendant Carboxylic Acid Groups”. Macromolecules. 38(8). 3205-3213. March 2005.
 
[12]  Carnahan, M.A. and Grinstaff, M.W, “Synthesis and characterization of poly(glycerol-succinic acid) dendrimers”. Macromolecules .34(22). 7648-7655. September 2001.
 
[13]  Stumbe, J.F. and Bruchmann, B, “Hyperbranched Polyesters Based on Adipic Acid and Glycerol”. Macromolar Rapid Communications .25(9).921-924 .March2004.
 
[14]  Wyatt, VT. and Strahan GD, “Degree of Branching in Hyperbranched Poly(glycerol-co-diacid)s Synthesized in Toluene”. Polymers. 4(1). 396-407. February 2012.
 
[15]  Carnahan, MA. and Grinstaff, M.W, “Synthesis and characterization of polyether-ester dendrimers from glycerol and lactic acid”. Journal of American Chemical Society. 123 (12). 2905-2906. March 2001.
 
[16]  Li, Y., Cook, WD., Moorhoff, C., Huang, W.C. and Chen, Q.Z, “Synthesis, characterization and proprieties of biocompatible poly(glycerol sebacate)”. Polymer International. 62(4). 534-547. April 2013
 
[17]  Tracy, Z., Bob, A., Adina, D., Steven, J. and Patrick, B, “Synthesis and Characterization of Glycerol-Adipic Acid Hyperbranched Polyesters”. Polymer. 55(20). 5065-5072. September 2014.
 
[18]  Coneski, PN., Rao, KS. and Schoenfisch, M.H, “Degradable nitric oxide-releasing biomaterials via post-polymerization functionalization of cross-linked polyesters”. Biomacromolecules. 11 (11). 3208-3215. October 2010.
 
[19]  Cao, W., Zhou, J., Mann, A., Wang, Y., Zhu, L, “Folatefunctionalized unimolecular micelles based on a degradable amphiphilic dendrimer-like star polymer for cancer cell-targeted drug delivery”. Biomacromolecules. 12(7).2697-26707. Jun 2011.
 
[20]  Ifran, M. and Seiler, M, “Encapsulation using hyperbranched polymers: from research and technologies to emerging applications”. Ind. Eng. Chem. Res. 49(3). 1169-1196. January 2010.
 
[21]  Lin, C. and Gitsov I “Synthesis and Physical Properties of Reactive Amphiphilic Hydrogels Based on Poly(pchloromethylstyrene) and Poly(ethylene glycol): Effects of Composition and Molecular”. Macromolecules. 43 (7). 32563267. March 2010.
 
[22]  Shi, X., Wang, SH., Lee, I., Shen, M. and Baker, J.R, “Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells”. Biopolymers . 91(11).936-942. November 2009.
 
[23]  Ye, L., Letchford, K., Heller, M., Liggins, R., Guan, D. and Kizhakkedathu, J.N, “Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin”. Biomacromolecules. 12(1).145-55. January (2011).
 
[24]  Chatterjee, S. and Ramakrishnan, S, “Understanding SelfSegregation of Immiscible Peripheral Segments in Pseudodendritic Hyperbranched Polydithioacetals: Formation of Improved Janus Structures”. Macro Letter. 3(9). 953-957. September 2014.
 
[25]  Gao, C. and Yan, D, “Hyperbranched polymers: from synthesis to applications”. Progress in Polymer Science .29(3).183-275. March 2004.
 
[26]  Lea, A., Matthias, W. and Thomas, K, “The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. role of branched polyesters and their modifications in the development of modern drug delivery
 
[27]  Benarbia Abderrahim, Elidrissi Abderrahman, Aqil Mohamed1, Amyay Aicha, Bellaouchi Reda, Asehraou Abdeslam, Jalal Isaad, Tahani abdesselam4 Journal of Polymer and Biopolymer Physics Chemistry, 2016, Vol. 4, No. 1, 16-27
 
[28]  Benarbia, A., Elidrissi, A., Aqil, M., Tabaght, F., Tahani, A. and Ouassini, K, “Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study”. World Journal of Environmental Engineering. 3(4). 95110. September 2015.
 
[29]  Zoubida SAADI. Université du Maine - U.F.R. Sciences et Techniques. 154.2008
 
[30]  Benarbia, A., Elidrissi A., Bellaouchi, R. and Asehraou, A, “Polybutylene succinate preparation and Biodegradation study of cellulose and cellulose blends”. International Journal Engineering Technical Research. 3(3), 348-354. March (2015).
 
[31]  Soni R.K., Soam S., Dutt K. Polymer Degradation and Stability. 94 (2009) 432.
 
[32]  Chrissafis K., Paraskevopoulos K.M., Bikiaris D.N. Thermochimica Acta. 435 (2005) 142.
 
[33]  Persenaire O., Alexandre M., Dubois P. Biomacromolecules 2 (2001) 288.
 
[34]  Buxbaum L.H., Angew. Chem. Int. Ed. 7 (1968) 182.
 
[35]  Ueno T., Nakashima E., Takeda K. Polymer Degradation and Stability. 95 (2010) 1862.
 
[36]  Bikiaris D.N., Chrissafis K., Paraskevopoulos K.M., Triantafyllidis K.S., Antonakou E.V. Polymer Degradation and Stability. 92 (2007) 525.
 
[37]  Draye A.-C., Persenaire O., Brožek J., Roda J., Košek T., Dubois Ph. Polymer. 42 (2001) 8325.
 
[38]  Angeles M., Corres., Zubitur M., Cortazar M., Múgica A. Journal of Analytical and Applied Pyrolysis. 92 (2011) 407.