Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: http://www.sciepub.com/journal/jpbpc Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Go
Journal of Polymer and Biopolymer Physics Chemistry. 2015, 3(1), 12-18
DOI: 10.12691/jpbpc-3-1-3
Open AccessReview Article

Influence of the Ionic Strength in the Intrinsic Viscosity of Xanthan Gum. An Experimental Review

Enrique D. Vega1, Elena Vásquez1, Jorge R. A. Diaz1, and Martín A. Masuelli2,

1Universidad Nacional de San Luis. PROICO 2-1612. INTEQUI-CONICET, San Luis, Argentina

2Universidad Nacional de San Luis. PROIPRO 2-2414. INFAP-CONICET, San Luis, Argentina

Pub. Date: December 21, 2015

Cite this paper:
Enrique D. Vega, Elena Vásquez, Jorge R. A. Diaz and Martín A. Masuelli. Influence of the Ionic Strength in the Intrinsic Viscosity of Xanthan Gum. An Experimental Review. Journal of Polymer and Biopolymer Physics Chemistry. 2015; 3(1):12-18. doi: 10.12691/jpbpc-3-1-3

Abstract

This study involves the influence of ionic strength in intrinsic viscosity of xanthan gum. The best concentration of monovalent and bivalent cations chloride salts is evaluated. The salt concentration is 0.001 M for monovalent cations and 3 x 10-5 M for bivalent cations and the hydrodynamic radius is maximum for these concentrations. The minimal concentration is in the range of 0.01 to 0.1 M for different cations.

Keywords:
xanthan gum ionic strength intrinsic viscosity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  García-Ochoa, F., Santos V.E. and Alcón, A. “Xanthan gum production: An unstructured kinetic model,” Enzyme and Microbial Technology, 17. 206-217. 1995.
 
[2]  Rosalam, S. and England, R, “Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp.” Enzyme and Microbial Technology, 39. 197-207. 2006.
 
[3]  Palaniraj, A. and Jayaraman, V., Production, recovery and applications of xanthan gum by Xanthomonas campestris,” Journal of Food Engineering, 106.1-12. 2011.
 
[4]  Borges, C.D., de Paula, R.C.M, Feitosa, J.P. and Vendruscolo, C.T, “The influence of thermal treatment and operational conditions on xanthan produced by X. arboricola pv pruni strain”. Carbohydrate Polymers, 75. 262-268. 2009.
 
[5]  Launay, B., Doublier, J.R. and Cuvelier, G., Flow properties of aqueous solutions and dispersions of polysaccharides, Functional properties of food macromolecules, (2) J. R. Mitchell and D. A. Ledward, Eds., 1986, 1-78.
 
[6]  Tako, M. and Nakamura, S., “Rheological Properties of Deacetylated Xanthan in Aqueous Media”, Agric. Biol. Chem, 48 (12). 2987-2993. 1984.
 
[7]  Lapasin, R. and Pricl, S, Rheology of Industrial Polysaccharides: Theory and Applications. Springer, 1995, 250-494.
 
[8]  Wrolstad, R.E, Food Carbohydrate Chemistry, 48, John Wiley & Sons, 2012, 91-106.
 
[9]  Yanniotis, S., Taoukis, P., Stoforos G. and Karathanos, V.T, Food Engineering Series. Editors: Gustavo V. Barbosa-Cánovas. Advances in Food Process Engineering Research and Applications, Springer, 2013, 277-279.
 
[10]  Dea, I.C.M and Morrison, A, “Chemistry and Interactions of Seed Galactomannans”, Advances in Carbohydrate Chemistry and Biochemistry, 31. 241-312. 1975.
 
[11]  Whistler, R.L. and BeMiller, J.N, Carbohydrate Chemistry for Food Scientists, Eagan Press, St. Paul, Minnesota, 1997, 117-128.
 
[12]  Higiro, J., Herald, T.J. and Alavi, S, “Rheological study of xanthan and locust bean gum interaction in dilute solution”, Food Research International, 39. 165-175. 2006.
 
[13]  Higiro, J., Herald T.J., Alavi, S. and Bean, S, “Rheological study of xanthan and locust bean gum interaction in dilute solution: Effect of salt”, Food Research International, 40. 435-447. 2007.
 
[14]  Casas, J.A. and García-Ochoa, F, “Viscosity of solutions of xanthan/locust bean gum mixtures”, J. Sci. Food Agric., 79. 25-31. 1999.
 
[15]  García-Ochoa, F., Santos V.E., Casas, J.A. and Gómez, E, “Xanthan Gum Production, Recovery and Properties”, Biotechnology Advances, 18. 549-579. 2000.
 
[16]  Moorhouse, R., Walkinshaw, M.D. and Arnott, S, Xanthan Gum-Molecular Conformation and Interactions, Extracellular Microbial Polysaccharides, ACS Symposium Series 7, 1977, 90-102.
 
[17]  Meyer, E.L., Fuller, G.G., Clark, R.C. and Kulicke, W.M, “Investigation of Xanthan Gum Solution Behavior under Shear Flow Using Rheooptical Techniques,” Macromolecules, 26. 504-611. 1993.
 
[18]  S. Carrington, J. Odell, L. Fisher, J. Mitchell and L. Hartley, “Polyelectrolyte behaviour of dilute xanthan solutions: salt effects on extensional rheology,” Polymer, vol. 37, pp. 2871-2875, 1996.
 
[19]  Rinaudo, M. and Milas, M, “Xanthan Properties in Aqueous Solution,” Carbohydrate Polymers, 2. 264-269. 1982.
 
[20]  Mcikkis, V.J., Franklin, D. and K. I’anson, “Rheology and Microstructure of Dispersions and Solutions of the Microbial Polysaccharide from Xanthomonas Campestris (Xanthan Gum),” Carbohydrate Research, 121. 13-30. 1983.
 
[21]  Whitcomb, P.J., Ek, B.J. and Macosko, C.W, Rheology of Xanthan Gum Solutions, Extracellular Microbial Polysaccharides, ACS Symposium Series 45 (12), 1977, 160-173.
 
[22]  Morris, E.R, Molecular Origin of Xanthan Solution Properties, Extracellular Microbial Polysaccharides, ACS Symposium Series 45 (6), 1977, 81-87.
 
[23]  Holzwarth, G.M, Is Xanthan a Wormlike Chain or a Rigid Rod?, Solution Properties of Polysaccharides, 2, Brant, D., ACS Symposium Series, American Chemical Society: Washington, DC, 1981, 15-23.
 
[24]  Viswanath, D.S., Ghosh, T.K., D.H. Prasad, L.N., Dutt, K. and Rani, K.Y, Viscosity of Liquids Theory, Estimation, Experiment and Data, Springer, 2007, 29-31.
 
[25]  Sun, S.F, Physical chemistry of Macromolecules, John Wiley & Sons, 2004, 165-190.
 
[26]  Tanford, Charles, “The electrostatic free energy of globular protein ions in aqueous salt solution,” Journal of Physical Chemistry, 59. 788-793. 1955.
 
[27]  van Holde, K.E, Physical Biochemistry, Foundations of Modern Biochemistry Series, Prentice-Hall, 1971, 141-154.
 
[28]  Teraoka, I, Polymer Solutions: An Introduction to Physical Properties, John Wiley & Sons, 2002, 209-215.
 
[29]  Masuelli, M.A. “Viscometric Study of Pectin. Effect of Temperature on the Hydrodynamic properties,” International Journal of Biological Macromolecules, 48. 286-291. 2011.
 
[30]  Masuelli, M.A, “Dextrans in Aqueous Solution. Experimental Review on Intrinsic Viscosity Measurements and Temperature Effect,” Journal of Polymer and Biopolymer Physics Chemistry, 1, 1. 13-21. 2013.
 
[31]  Masuelli, M.A., Sansone, M.G, Hydrodynamic properties of Gelatin. Studies from intrinsic viscosity measurements, Products and Applications of Biopolymers. Chapter 5 Editor C. J. R. Verbeek, INTECH, 2012, 85-116.
 
[32]  Haurowitz, F, The Chemistry and Functions of Proteins, Academic Press, 1963, 76-79.
 
[33]  Lyklema, J, Fundamentals of interface and colloid science, 1st ed., vol II. Academic Press 1995, 4122-4133.
 
[34]  Hunter, R, Zeta potential in colloid science, Academic Press, 1981, 179-204.
 
[35]  Ohshima, H, “Primary Electroviscous Effect in a Dilute Suspension of Soft Particles,” Langmuir, 24. 6453-6461. 2008.
 
[36]  Overbeek, J.Th.G, “Polyelectrolytes, Past, Present and Future,” Pure & Applied Chem., 46. 91-101. 1976.
 
[37]  Jiang, L., Yang, D. and Bor Chen, S, “Electroviscous Effects of Dilute Sodium Poly(styrenesulfonate) Solutions in Simple Shear Flow,” Macromolecules, 34. 3730-3735. 2001.
 
[38]  Antonietti, M., Briel, A. and Fosrster, S, “Quantitative Description of the Intrinsic Viscosity of Branched Polyelectrolytes,” Macromolecules, 30. 2700-2704. 1997.
 
[39]  Faria, S., de Oliveira Peckowicz, C.L., Lemos de Morais, S.A., Hernandez Terrones, M.G., de Resende, M.M., Pessoa de Franca, F. and Cardoso, V.L, “Characterization of xanthan gum produced from sugar cane broth,” Carbohydrate Polymers, 86. 469-476. 2011.
 
[40]  Eckelt, J., Knopf, A. and Wolf, B.A, “Polyelectrolytes: Intrinsic Viscosities in the Absence and in the Presence of Salt,” Macromolecules, 41. 912-918. 2008.
 
[41]  Masuelli, M.A, “Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures,” Journal of Polymer and Biopolymer Physics Chemistry, 2, 2. 37-43. 2014.
 
[42]  Pavlov, G.M., Gubarev, A.S., Zaitseva I.I. and Sibileva, M.A, “Determination of Intrinsic Viscosity of Polyelectrolytes in Salt-Free Solutions,” Russian Journal of Applied Chemistry, 79, 9. 1407-1412. 2006.
 
[43]  Pavlov, G.M, “Size and average density spectra of macromolecules obtained from hydrodynamic data,” Eur. Phys., 22. 171-180. 2007.
 
[44]  Muller, G., Anrhourrache, M., Lecourtier, J. and Chauveteau, G, “Salt dependence of the conformation of a single-stranded xanthan,” Int. J. Biol. Macromol., 8. 167-172. 1986.
 
[45]  Holzwarth, G., “Molecular Weight of Xanthan Polysaccharide,” Carbohydrate Research, 66. 173-186. 1978.
 
[46]  Whitcomb, P. J. and Macosko, C.W., “Rheology of Xanthan Gum,” Journal of Rheology, 22 (5). 493-505. 1978.
 
[47]  Sato, T., Norisuye, T. and Fujita, H, “Double-Stranded Helix of Xanthan: Dimensional and Hydrodynamic Properties in 0.1 M Aqueous Sodium Chloride,” Macromolecules, 17, 2696-2700. 1984.
 
[48]  Cuvelier, G. and Launay, B, “Concentration Regimes in Xanthan Gum Solutions Deduced from Flow and Viscoelastic Properties,” Carbohydrate Polymers, 6. 321-333. 1986.
 
[49]  Chauveteau, G, “Rodlike polymer solution flow through fine pores: Influence of pore size on rheological behavior,” Journal of Rheology, 26. 111-142. 1982.
 
[50]  Berry, D.H. and Russel, W.B, “The rheology of dilute suspensions of slender rods in weak flows,” J. Fluid Mech., 180, 475-494. 1987.
 
[51]  Tinland, B. and Rinaudo, M, “Dependence of the Stiffness of the Xanthan Chain on the External Salt Concentration,” Macromolecules, 22. 1863-1865. 1989.
 
[52]  Milas, M., Rinaudo, M., Knipper, M. and Schuppiser, J.L, “Flow and Viscoelastic Properties of Xanthan Gum Solutions,” Macromolecules, 23. 2506-2511. 1990.
 
[53]  Milas, M. Reed, W.F. and Printz, S, “Conformations and flexibility of native and re-natured xanthan in aqueous solutions,” International Journal of Biological Macromolecules, 18. 211-221. 1996.
 
[54]  Ross-Murphy, S.B., Shatwell, K.P.I., Sutherland, W. and Dea, I.C.M, “Influence of acyl substituents on the interaction of xanthans with plant polysaccharides,” Food Hydrocolloids, 10, 1. 117-122. 1996.
 
[55]  Capron, I., Brigandt, G. and Muller, G, “About the native and renatured conformation of xanthan exopolysaccharide,” Polymer, 38(21). 5289-5295. 1997.
 
[56]  Launay, B., Cuvelier G. and Martinez-Reyes, S, “Viscosity of locust bean, guar and xanthan gum solutions in the Newtonian domain: a critical examination of the log(ɳsp)0-logC[ɳ]0 master curves,” Carbohydrate Polymers, 34. 385-395. 1997.
 
[57]  Schorsch, C., Gamier, C. and Doublier, J.L, “Viscoelastic properties of xanthan/galactomannan mixtures: comparison of guar gum with locust bean gum,” Carbohydrate Polymers, 34. 165-175. 1997.
 
[58]  Casas, J.A., Santos, V.E. and Garcia-Ochoa, F, “Xanthan gum production under several operational conditions: molecular structure and rheological properties,” Enzyme and Microbial Technology, 26. 282-291. 2000.
 
[59]  Wang, F., Wang Y.J. and Sun, Z, “Conformational Role of Xanthan Gum in its Interaction with Guar Gum,” Journal of Food Science, 67 (9). 3289-3294. 2002.
 
[60]  Achayuthakan, P., Suphantharika, M. and Rao, M.A, “Yield stress components of waxy corn starch–xanthan mixtures: Effect of xanthan concentration and different starches,” Carbohydrate Polymers, 65. 469-478. 2006.
 
[61]  Khouryieh, H.A., Herald, T.J., Aramouni, F. and Alavi, S, “Influence of mixing temperature on xanthan conformation and interaction of xanthan–guar gum in dilute aqueous solutions,” Food Research International, 39. 964-973. 2006.
 
[62]  Khouryieh, H.A., Herald, T.J., Aramouni, F. and Alavi, S, “Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions: Effect of salt concentration on the polymer interactions,” Food Research International, 40. 883-893. 2007.
 
[63]  Achayuthakan, P. and Suphantharika, M, “Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum,” Carbohydrate Polymers, 71. 9-17. 2008.
 
[64]  Heinzmann, G. and Tartsch, B, “Alginates, chitosans and xanthans. Characterization of food ingredients by GPC/SEC with triple detection,” AgroFood, 20 (4). 56-59. 2009.
 
[65]  Choppe, E., Puaud, F., T. Nicolai and Benyahia, L, “Rheology of xanthan solutions as a function of temperature, concentration and ionic strength,” Carbohydrate Polymers, 82. 1228-1235. 2010.
 
[66]  Desplanques, S., Renou, F., Grisel. M. and Malhiac, C, “Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions,” Food Hydrocolloids, 27. 401-410. 2012.
 
[67]  Laneuville, S.I., Turgeon, S.L. and Paquin, P, “Changes in the physical properties of xanthan gum induced by a dynamic high-pressure treatment,” Carbohydrate Polymers, 92. 2327-2336. 2013.
 
[68]  Gunasekar, V., Reshma, K.R., Treesa, G., Gowdhaman, D. and Ponnusami, V, “Xanthan from sulphuric acid treated tapioca pulp: Influence of acid concentration on xanthan fermentation,” Carbohydrate Polymers, 102. 669-673. 2014.
 
[69]  Pavlov, G.M., Okatova, O.V., Gubarev, A.S., Gavrilova, I. I. and Panarin, E.F, “Strong Linear Polyelectrolytes in Solutions of Extreme Concentrations of One−One Valent Salt. Hydrodynamic Study,” Macromolecules, 47. 2748-2758. 2014.
 
[70]  Nishida, K., Kagi, K., Kanaya, T. and Fanjat, N, “Determination of intrinsic viscosity of polyelctrolyte solutions,” Polymer, 43. 1295-1300. 2002.
 
[71]  Takahashi, A., Kato, T. and Nagasawa, M, “The Second Virial Coefficient of Polyelectrolytes,” Journal of Physical Chemistry, 71. 2001-2010. 1967.
 
[72]  Lecourtier, J. and Chauveteau, G, “Xanthan fractionation by surface exclusion chromatography,” Macromolecules, 17 (7). 1340-1343. 1984.
 
[73]  Ström, A., Schuster, E. and Goh, S.M, “Rheological characterization of acid pectin samples in the absence and presence of monovalent ions,” Carbohydrate Polymers, 113. 336-343. 2014.
 
[74]  Oviatt, H.W. and Brant, D.A, “Viscoelastic Behavior of Thermally Treated Aqueous Xanthan Solutions in the Semidilute Concentration Regime,” Macromolecules, 27. 2402-2408. 1994.
 
[75]  Camesano, T.A. and Wilkinson, K.J, “Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy,” Biomacromolecules, 2. 1184-1191. 2001.
 
[76]  Petri, D.F.S, “Xanthan gum: A versatile biopolymer for biomedical and technological applications,” J. Appl. Polym. Sci. 2015, 42035.