Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: http://www.sciepub.com/journal/jpbpc Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Go
Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(4), 84-90
DOI: 10.12691/jpbpc-2-4-5
Open AccessReview Article

Bioplastics: Its Timeline Based Scenario & Challenges

Swati Pathak1, CLR Sneha1 and Blessy Baby Mathew1,

1Department of Biotechnology, Sapthagiri College of Engineering, Bangalore- 57, Karnataka, India

Pub. Date: December 01, 2014

Cite this paper:
Swati Pathak, CLR Sneha and Blessy Baby Mathew. Bioplastics: Its Timeline Based Scenario & Challenges. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(4):84-90. doi: 10.12691/jpbpc-2-4-5

Abstract

There has been substantial interest in the advancement and production of biodegradable polymer to solve the current problem of pollution triggered by the continuous use of synthetic polymer of petroleum origin. The likelihood of producing these bio- polymers commercially and at comparable cost has been the key focus in this area. The most promising way of making plastics from other abundant renewable sources like corn, soy beans, sugarcane etc. is the avenue of Bio plastics. This paper is a comparative study that confers the likelihood of the conventional petro-plastics being substituted by the new-age degradable and renewable bio-derived polymers. It presents the keynote issues that support findings of the benefits these materials have in relation to conventional, petrochemical based counterparts. It is the view of the authors that biodegradable plastic materials are most apt for single-use disposable applications where the post-consumption waste can be locally composted.

Keywords:
biodegradable bio-plastic bio-polymers disposable renewable

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Abaza, H., Bankobeza, S., Bendahou, N., Buyse-Kalneiva, A., Claasen, D., Ingraham, B., Zucca, C. “Capacity Building for Sustainable Development: An overview of UNEP environmental capacity development initiatives.”
 
[2]  Solaiman, D. K., Ashby, R. D., Foglia, T. A., Marmer, W. N. (2006). Conversion of agricultural feedstock and coproducts into poly (hydroxyalkanoates). Applied microbiology and biotechnology, 71 (6), 783-789.
 
[3]  Janssen, L., Moscicki, L. (2009). “Thermoplastic starch”. John Wiley & Sons.
 
[4]  Anish Kumari Bhuwal, Gulab Singh, Neeraj Kumar Aggarwal, Varsha Goyal, Anita Yadav, “Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes,” International Journal of Biomaterials, vol. 2013, Article ID 752821, 10 pages, 2013.
 
[5]  D. Byrom, “Polymer synthesis by microorganisms: technology and economics,” Trends in Biotechnology, vol. 5, no. 9, pp. 246-250, 1987.
 
[6]  Ojumu, T. V., Yu, J., Solomon, B. O. (2004). Production of polyhydroxyalkanoates, a bacterial biodegradable polymers. African Journal of Biotechnology, 3 (1), 18-24.
 
[7]  Reddy, C. S. K., Ghai, R., Kalia, V. (2003). Polyhydroxyalkanoates: an overview. Bioresource technology, 87 (2), 137-146.
 
[8]  Thompson, R. C., Moore, C. J., vom Saal, F. S., Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1526), 2153-2166.
 
[9]  Elias, H. G. (1993). An introduction to plastics. Weinheim: VCH.
 
[10]  Thompson, R. C., Moore, C. J., vomSaal, F. S., Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1526), 2153-2166.
 
[11]  Stevens, E. S. (2002). Green plastics: an introduction to the new science of biodegradable plastics. Princeton University Press.
 
[12]  Morgan, J. (1991). Conservation of Plastics: An Introduction to their history, manufacture, deterioration, identification and care. The Conservation Unit of the Museums & Galleries Commission.
 
[13]  Mossman, S. T. (1997). Early plastics: perspectives, 1850-1950. Leicester University Press.
 
[14]  Kuruppalil, Z. (2011). GREEN PLASTICS: AN EMERGING ALTERNATIVE FOR PETROLEUM-BASED PLASTICS. International Journal of Engineering Research & Innovation, 3 (1).
 
[15]  Bellis, M. (2011). “The History of Plastics.”About.com Inventors.
 
[16]  Van Beilen, J. B. and Poirier, Y. (2008), Production of renewable polymers from crop plants. The Plant Journal, 54: 684-701.
 
[17]  Snell, K. D., & Peoples, O. P. (2009). PHA bioplastic: A value‐added coproduct for biomass biorefineries. Biofuels, Bioproducts and Biorefining, 3 (4), 456-467.
 
[18]  Huang, T. Y., Duan, K. J., Huang, S. Y., Chen, C. W. (2006). Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferaxmediterranei. Journal of Industrial Microbiology and Biotechnology, 33 (8), 701-706.
 
[19]  Munoz, A., Esteban, L., Riley, M. R. (2008). Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagusdegradans. Biotechnology and bioengineering, 100 (5), 882-888.
 
[20]  Mumtaz, T., Yahaya, N. A., Abd-Aziz, S., Abdul Rahman, N. A., Yee, P. L., Shirai, Y., Hassan, M. A. (2010). Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent-a Malaysian perspective. Journal of Cleaner Production, 18 (14), 1393-1402.
 
[21]  Van Walsem, J., Anderson, E., Licata, J., Sparks, K. A., Mirley, C., Sivasubramanian, M. S. (2011). U.S. Patent Application 13/578,044.
 
[22]  Castilho, L. R., Mitchell, D. A., Freire, D. M. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource technology, 100 (23), 5996-6009.
 
[23]  Bengtsson, S., Werker, A., Christensson, M., Welander, T. (2008). Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresource Technology, 99 (3), 509-516.
 
[24]  Verlinden, R. A., Hill, D. J., Kenward, M. A., Williams, C. D., Radecka, I. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of applied microbiology, 102(6), 1437-1449.
 
[25]  Chandra, R., Renu Rustgi. "Biodegradation of maleated linear low-density polyethylene and starch blends." Polymer Degradation and Stability 56.2 (1997): 185-202.
 
[26]  Koenig, M. F., and S. J. Huang. "Biodegradable blends and composites of polycaprolactone and starch derivatives." Polymer 36.9 (1995): 1877-1882.
 
[27]  Witt, U., Yamamoto, M., Seeliger, U., Müller, R. J., & Warzelhan, V. (1999). Biodegradable polymeric materials—not the origin but the chemical structure determines biodegradability. Angewandte Chemie International Edition, 38 (10), 1438-1442.
 
[28]  Demmer, B. J. (2011). “Comparison and analysis of biobased/ biodegradable and petrochemical cutlery flexibility”.
 
[29]  http://htpoint.com/featured-news/bioplastics-material-future/-Amy Taylor, “Bioplastics Could Be The Material Of The Future”
 
[30]  Bastioli, C. (Ed.). (2005). Handbook of biodegradable polymers. Smithers Rapra Publishing.
 
[31]  Porta, R., Di Pierro, P., Sorrentino, A., Mariniello, L. (2011). Promising perspectives for transglutaminase in “bioplastics” production. J Biotechnol Biomaterial, 1, 102e.
 
[32]  Brandi, H., Bachofen, R., Mayer, J., Wintermantel, E. (1995). Degradation and applications of polyhydroxyalkanoates. Canadian journal of Microbiology, 41 (13), 143-153.
 
[33]  Sarasa, J., Gracia, J. M., Javierre, C. (2009). Study of the bio disintegration of a bioplastic material waste. Bioresource technology, 100 (15), 3764-3768.
 
[34]  Witt, U., et al. "Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates." Chemosphere 44.2 (2001): 289-299.
 
[35]  Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B., & Patel, M. K. (2012). A review of the environmental impacts of bio based materials. Journal of Industrial Ecology, 16 (s1), S169-S181.
 
[36]  Mohanty, A. K., Misra, M., Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10 (1-2), 19-26.
 
[37]  Shah, A. A., Hasan, F., Hameed, A., Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology advances, 26 (3), 246-265.
 
[38]  Rajendran, N., Puppala, S., Sneha Raj, M., Ruth Angeeleena, B., Rajam, C. (2012). Seaweeds can be a new source for bioplastics. Journal of Pharmacy Research Vol, 5 (3), 1476-1479.
 
[39]  Machmud, M. N., Fahmi, R., Abdullah, R., Kokarkin, C. (2013). Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering, 5 (2), 81-88.
 
[40]  Harmsen, P. F., Hackmann, M. M., Bos, H. L. (2014). Green building blocks for bio‐based plastics. Biofuels, Bioproducts and Biorefining, 8 (3), 306-324.
 
[41]  Keshavarz, T., Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current opinion in microbiology, 13 (3), 321-326.