Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Journal of Polymer and Biopolymer Physics Chemistry. 2013, 1(1), 26-30
DOI: 10.12691/jpbpc-1-1-5
Open AccessArticle

High Energy Electron Irradiated Polystyrene: Free Volume and Thermal Properties Studied by PALS and DSC

Arunava Mandal1, Sandip Pan1, Subrata Mukherjee1, Achintya K. Saha1, C. Ranganathaiah2 and Asmita Sengupta1,

1Physics Department, Visva-Bharati Central University, P.O.- Santiniketan, West Bengal, India

2Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India

Pub. Date: December 16, 2013

Cite this paper:
Arunava Mandal, Sandip Pan, Subrata Mukherjee, Achintya K. Saha, C. Ranganathaiah and Asmita Sengupta. High Energy Electron Irradiated Polystyrene: Free Volume and Thermal Properties Studied by PALS and DSC. Journal of Polymer and Biopolymer Physics Chemistry. 2013; 1(1):26-30. doi: 10.12691/jpbpc-1-1-5


The variation in the microstructure in terms of free volume and the thermal properties, such as specific heat(Cp), glass transition temperature(Tg) of 8 MeV electron irradiated Polystyrene (PS) at different doses have been measured using Positron Annihilation Lifetime Spectroscopy (PALS) and Differential Scanning Calorimetry (DSC) respectively. PALS results showed that at irradiation dose 75 KGy the free volume of the polymer matrix decreases suggesting cross liking of the inter chain and structure appears to be stabilized. In the DSC measurements the specific heat at constant pressure suggests the scission of chains at 100 KGy which is well reflected in the increase of the free volume at this dosage. The observed changes in Tg are not prominent and do not really reflect the changes in free volume upon irradiation.

positron annihilation lifetime differential scanning calorimetry polystyrene free volume specific heat

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Jean, Y. C., “Positron Annihilation Spectroscopy for Chemical Analysis: A Novel Probe for Microstructural Analysis of Polymers”, Microchem J, 42. 72. 1990.
[2]  Mogensen, O.E, Positron Annihilation in Chemistry, Springer-Verlag, Barlin, vol.-58, 1995.
[3]  Jean, Y. C, Mallon, P. E and Schrader, D. M, Principles and Application of Positron and Positronium Chemistry, World Scientific, Singapore, 2003.
[4]  Raj J.M. and Ranganathaiah, C., “A new method of stabilization and characterization of the interface in binary polymer blends by irradiation: A positron annihilation study,” J. Polym. Sci. B: Polym. Phys. 47. 619-632. 2009.
[5]  Chandrashekar, M.N. and Ranganathaiah, C., “Diffusion of permanent liquid dye molecules in human hair investigated by positron lifetime spectroscopy,” Colloids. Surf. B 69. 129-134 2009.
[6]  Vleeshouwers, S., Kluin, J. E., McGervey, J. D., Jamieson, A. M., and Simha, R., “Monte Carlo calculations of hole size distribution: simulation of positron annihilation spectroscopy J. Polym. Sci., Part B. Polym. Phys., 30. 1429. 1992.
[7]  Schmitz, H. and Muller- Plathe, F., “Calculation of the lifetime of positronium in polymers via molecular dynamics simulations”, J. Chem. Phys., 11. 1040. 2000.
[8]  Wang, J., Vincent, J. and Quarles, C. A., “Review of positron annihilation spectroscopy studies of rubber with carbon black filler”, Nuclear Instruments and Methods in Physics Research B, 241. 271-275. 2005.
[9]  Mandal, A., Mukherjee, S., Pan, S.and Sengupta, A., “positron lifetime measurements in natural rubber with different fillers” Int. Journal of Modern Physics, 22. 112-117. 2013.
[10]  Mandal, A., Mukherjee, S., Pan, S., Saha, A. K. and Sengupta, A., “PALS and DSC studies in high energy electron irradiated semicrystalline polypropylene” Int. Conf. on Recent Trends in Applied Physics and Ma terial Science. AIP Conf. Proc. 1536. 839. 2013.
[11]  Dlubek, G., Shaikh, M. Q., Krause-Rehberg, R. and Paluch, M., “Effect of free volume and temperature on the structural relaxation in polymethylphenyl-siloxane: a positron lifetime and pressure-volume-temperature study.” The Journal of Chemical Physics, 126. 0249006. 2007.
[12]  Cao, H., Zhang, R., Yuan, J. P., Huang, C. M., Jean, Y. C., Suzuki, R., Ohdaira, T. and Nielsen, B., “Free-volume hole model for positronium formation in polymers: surface studies.”, J. Phys. Condens. Matter, 10. 10429-10442. 1998.
[13]  Tao, S. J., “Positronium annihilation in molecular substances”, J.Chem. Phy., 56. 5499. 1972.
[14]  Pethrick, R. A., “Positron annihilation – a probe for nanoscale voids and free volume”, Prog. Polym Sci, 22. 1. 1997.
[15]  Sangappa, A., Mahadevaiah, T., Ganesha, S., Divakara, S., Pattabi, M. and Somashekar, R., “Physical and Thermal Properties of 8 MeV Electron Beam Irradiated HPMC Polymer Films”, Nuclear Instruments and Methods in Physics Research B, 266 3975–3980. 2008.
[16]  Hareesh, K. and Sanjeev, G., “8 MeV Electron Induced Changes in Structural and Thermal Properties of Lexan Polycarbonate, Materials Sciences and Applications, 2. No. 11. 1682-1687. 2011.
[17]  Bershtein, V. A., Sirota, A. G. and Egorova, L. M., “Differential Scanning Calorimetry of Irradiated Polymers” Journal of Thermal Analysis, 38. 1215-1231. 1992 and references therein.
[18]  Abdel-Hady, E. E., Abdel-Hadmid, H. M. and Mohemed Hamdy, F. M., “Electron beam and gamma irradiation effects on conducting polystyrene studied by positron annihilation technique”, Radiation measurements, 38. 211-216. 2004.
[19]  Ziaie, F., Noori, A., Anvari, F., Ghaffari, M., Ahmadian, V. and Durrani, S.A., “Effect of high-dose electron irradiation on specific heat capacity of high-impact polystyrene”, Radiation Measurements, 40. 758-761. 2005.
[20]  Mirzaev, S. Z., Heimburg, T. and Kaatze, U., “Critical behavior of polystyrene-cyclohexane: Heat capacity and mass density”, Physical Rev. E, 82. 061502. 2010.
[21]  Kilburn, D., Bamford, D., Lupke, T., Dlubek, G., Menke, T. J. and Alam, M. A., “Free volume and glass transition in ethylene/1-octene copolymers: positron lifetime studies and dynamic mechanical analysis”, Polymer, 43. 6973-6983. 2002.
[22]  Eldrup, M., Lightbody, D. and Sherwood, J. H., “The temperature dependence of positron lifetimes in solid pivalic acid”, Chem. Phys., 63. 51. 1981.
[23]  Gregory, R. B., “Free‐volume and pore size distributions determined by numerical Laplace inversion of positron annihilation lifetime data”, J. Appl. Phys., 70. 4665. 1991.
[24]  Marzocca, A. J., Cerveny, S., Salgueiro, W., Somoza, A. and Gonzalez, L., “Characterization of free volume during vulcanization of styrene butadiene rubber by means of positron annihilation lifetime spectroscopy and dynamic mechanical test”, Physical Rev. E, 65. 021801. 2002.
[25]  Wastlund, C. and Maurer, F. H. J., “Positron Lifetime Distributions and Free Volume Parameters of PEO/PMMA Blends Determined with the Maximum Entropy Method”, Macromolecules, 30. 5870-5876. 1997.
[26]  Dlubek, G., Sengupta, A., Pionteck, J., Krause-Rehberg, R., Kaspar Harald and Helmut Lochhaas, K., “Temperature Dependence of the Free Volume in Fluoroelastomers from Positron Lifetime and PVT Experiments”, Macromolecules, 37. 6606-6618. 2004.
[27]  Al-Qaradawi, I. Y., “Electron Irradiated Low Density Polyethylene Studied by Positron Annihilation Lifetime Spectroscopy”, Radiation Physics and Chemistry, 68. 467-470. 2003.
[28]  O’Neill, M. J., “Measurement of Specific Heat Functions by Differential Scanning Calorimetry”, Analytical Chemistry, 38(10). 1331. 1966.
[29]  Pyda, M., “Conformational Heat Capacity of Interacting Systems of Polymer and Water”, Macromolecules, 35. 4009-4016. 2002.
[30]  Reading, M. and Hourston, D. J., “Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Application in Polymer characterization”, Springer, 2006.