Journal of Polymer and Biopolymer Physics Chemistry
ISSN (Print): 2373-3403 ISSN (Online): 2373-3411 Website: Editor-in-chief: Martin Alberto Masuelli
Open Access
Journal Browser
Journal of Polymer and Biopolymer Physics Chemistry. 2020, 8(1), 1-14
DOI: 10.12691/jpbpc-8-1-1
Open AccessArticle

The Study of Polyvinyl Pyrrolidone-Polyvinyl Alcohol Copolymers and Blends

Ronald P. D’Amelia1, and Joseph Mancuso1

1Chemistry Department, Hofstra University, Hempstead, NY

Pub. Date: February 23, 2020

Cite this paper:
Ronald P. D’Amelia and Joseph Mancuso. The Study of Polyvinyl Pyrrolidone-Polyvinyl Alcohol Copolymers and Blends. Journal of Polymer and Biopolymer Physics Chemistry. 2020; 8(1):1-14. doi: 10.12691/jpbpc-8-1-1


The synthesis of new biodegradable polymers is of critical importance for preserving the environment and finding new ways to process ubiquitously used polymers to enhance their biodegradability is crucial for minimizing waste and anthropogenic environmental degradation. Polyvinyl alcohol (PVOH) is known to be a biodegradable polymer and thus saponification of the pervasive Polyvinyl Pyrrolidone-Polyvinyl Acetate (PVP-PVAc) copolymer represents an unexplored opportunity for the production of a new biodegradable, water-soluble copolymer (PVP-PVOH). Herein we report on the facile saponification/hydrolysis of PVP-PVAc copolymers of various molecular weights and copolymer compositions and characterize the PVP-PVOH copolymer product via Nuclear Magnetic Resonance Spectroscopy (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), differential refractive index increment measurements (DNDC), and Elemental Analysis (EA).

water-soluble polymers saponification biodegradable nuclear magnetic resonance spectroscopy fourier transform infrared spectroscopy differential refractive index increment differential scanning calorimetry polyvinyl alcohol polyvinyl pyrrolidone polyvinyl acetate copolymers

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Kadajji, V. G.; Betageri, G. V. Water Soluble Polymers for Pharmaceutical Applications. Polymers 2011, 3 (4), 1972-2009.
[2]  Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288-6308.
[3]  Reneker, D.H.; Yarin, A.L.; Fong, H.; Koombhongse, S. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning. J. Appl. Phys. 2000, 87, 4531-4547.
[4]  Krishna, N.; Brow, F. Polyvinyl Alcohol as an Ophthalmic Vehicle. Effect on Regeneration of Corneal Epithelium. Am. J. Opthalmol. 1964, 57, 99-106
[5]  Paton, T.F.; Robinson, J.R. Ocular Evaluation of Polyvinyl Alcohol Vehicle in Rabbits. J. Pharm. Sci. 1975, 64, 1312-1316.
[6]  Ciro, E; Marin, E; Rojas, J. A Review of Polyvinyl Alcohol Derivatives: Promising Materials for Pharmaceutical and Biomedical Applications. African Journal of Pharmacy and Pharmacology 2014, 8(24), 674-684.
[7]  Forster, A, Hempenstall, J, Rades, T “Characterization of Glass Solutions of Poorly Water-Soluble Drugs Produced by Melt Extrusion with Hydrophilic Amorphous Polymers.” J. Pharm. Pharmcol. January 2001
[8]  Jijun, F, Lishuang, X, Xioli, W, Shu, Z, Xiaoguang, T, Xingna, Z, Haibing, H, Xing, T “Nimodipine (NM) Tablets with High Dissolution Containing NM Solid Dispersions Prepared by Hot-Melt Extrusion.” Drug Dev. Ind. Pharm. March 2011
[9]  Chokshi, R.J., Sandhu, H.K., Iyer, R.M., Shah, N.H, Malick, W.A., Zia, H “Characterization of Physico-Echanical Properties of Indomethacin and Polymers to Assess their Suitability for Hot-Melt Extrusion Process as a Means to Manufacture Solid Dispersion/Solution” J. Pharm. Sci. November 2005
[10]  Cosmetic Ingredient Review; Safety Assessment of Vinylpyrrolidone Polymers as Used in Cosmetics.
[11]  Treatment Technologies for Wastewater From Cosmetic Industry – A Review Abidemi, B et. al. International Journal of Chemical and Biomolecular Science 2019, 69-80.
[12]  Toxicity Identification Evaluation of Cosmetics Industry Wastewater Dias de Melo, E et. al. Journal of Hazardous Materials 2013, 329-334.
[13]  Amann, M.; Minge, O. Biodegradability of Poly(Vinyl Acetate) and Related Polymers. Synthetic Biodegradable Polymers Advances in Polymer Science 2011, 137-172.
[14]  W., L.; H., L. Synthesis of High-Molecular-Weight Poly(Vinyl Alcohol) with High Yield by Novel One-Batch Suspension Polymerization of Vinyl Acetate and Saponification. Colloid & Polymer Science 2002, 280 (9), 835–840.
[15]  Ouellette, R. J.; Rawn, J. D. Principles of organic chemistry; Elsevier: Amsterdam, 2015.
[16]  Baraker, B. M.; Hammannavar, P. B.; Lobo, B. Optical, Electrical, Thermal Properties of Cadmium Chloride Doped PVA – PVP Blend. 2015.
[17]  Gaaz, T.; Kadhum, A.; Michael, P.; Al-Amiery, A.; Sulong, A.; Nassir, M.; Jaaz, A. Unique Halloysite Nanotubes–Polyvinyl Alcohol–Polyvinylpyrrolidone Composite Complemented with Physico–Chemical Characterization. Polymers 2017, 9 (12), 207.
[18]  Zidan, H. M. Structural and Electrical Properties of PVA/PVP Blend Doped with Methylene Blue Dye. International Journal of Electrochemical Science 2016, 9041-9056.
[19]  Seabra, A. B.; Oliveira, M. G. D. Poly(Vinyl Alcohol) and Poly(Vinyl Pyrrolidone) Blended Films for Local Nitric Oxide Release. Biomaterials 2004, 25 (17), 3773-3782.
[20]  Cassu, S. N.; Felisberti, M. I. Poly(Vinyl Alcohol) and Poly(Vinyl Pyrrolidone) Blends: Miscibility, Microheterogeneity and Free Volume Change. Polymer 1997, 38 (15), 3907-3911.
[21]  Cassu, S. N.; Felisberti, M. I. Poly(Vinyl Alcohol) and Poly(Vinylpyrrolidone) Blends: 2. Study of Relaxations by Dynamic Mechanical Analysis. Polymer 1999, 40 (17), 4845-4851.
[22]  Reddy, C. S.; Han, X.; Zhu, Q.-Y.; Mai, L.-Q.; Chen, W. Dielectric Spectroscopy Studies on (PVP PVA) Polyblend Film. Microelectronic Engineering 2006, 83 (2), 281-285.
[23]  Qu, L. J. Preparation and Properties of Polyvinyl Alcohol/Polyvinyl Pyrrolidone Blend Films. Applied Mechanics and Materials 2010, 44-47, 2381-2384
[24]  Nguyen, T.L.U.; Eagles, K.; Davis, T.P.; Barner-Kowollik, C.; Stenzel, M.H. Investigation of the influence of the architectures of poly(vinyl pyrrolidone) polymers made via the reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthates mechanism on the stabilization of suspension polymerizations. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4372-4383.
[25]  D’Amelia, R.P.; Mancuso, J; Nirode, W. The Characterization of Poly n-vinyl Pyrrolidone- Polyvinyl Acetate (PVP-PVAc) Copolymers and Blends by Nuclear Magnetic Resonance Spectroscopy, Fourier Transform Infrared Spectroscopy, and Elemental Analysis, Journal of Polymer and Biopolymer Physics Chemistry 2019 7(1) 1-9.
[26]  D’Amelia, R.P.; Huang, L.; Mancuso, J. Quantitative Analysis of Polyvinyl Alcohol-Polyethylene (PVOH-PE) Copolymers and Polyvinyl Pyrrolidone-Polyvinyl Acetate (PVP-PVAc) Copolymers and Blends using Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA) World Journal of Chemical Education 2019 7(1) 1-11.
[27]  D’Amelia, R.P., Huang, L., Nirode, W.F., Gentile, S., Quantitative Analysis of Copolymers and Blends of Polyvinyl Acetate (PVAc) using Fourier Transform Infrared Spectroscopy (FTIR) and Elemental Analysis (EA) World Journal of Chemical Education 2016 4(2) 25-31.
[28]  Loría-Bastarrachea, M. I.; Herrera-Kao, W.; Cauich-Rodríguez, J. V.; Cervantes-Uc, J. M.; Vázquez-Torres, H.; Ávila-Ortega, A. A TG/FTIR Study on the Thermal Degradation of Poly(Vinyl Pyrrolidone). Journal of Thermal Analysis and Calorimetry 2010, 104 (2), 737-742.
[29]  Korbag, I.; Saleh, S. M. Studies on the Formation of Intermolecular Interactions and Structural Characterization of Polyvinyl Alcohol/Lignin Film. International Journal of Environmental Studies 2016, 73 (2), 226-235.
[30]  Berard, M. T.; Daniels, C. A.; Summers, J. W.; Wilkes, C. E. PVC handbook; Hanser: München, 2005.
[31]  Turner, D.; Schwartz, A. The Glass Transition Temperature of Poly(N-Vinyl Pyrrolidone) by Differential Scanning Calorimetry. Polymer 1985, 26 (5), 757-762.
[32]  Huglin, M. B. Specific Refractive Index Increments of Polymer Solutions. Part II. Scope and Applications. Journal of Applied Polymer Science 1965, 9 (12), 4003-4024.
[33]  Huang, S. J., Wang, I.-F., and Quinga, E. (1983) Poly (Enol—Ketone) from the Oxidation of Poly (Vinyl Alcohol). Modification of Polymers 75-83.
[34]  Lu, Y., Kong, Q.-M., Jing, R., Hu, X., and Zhu, P.-X. (2013) Solid state oxidation of polyvinyl alcohol by hydrogen peroxide-Cu (II). Polymer Degradation and Stability 98, 1103–1109.
[35]  Oh, S.-Y., Kim, H.-W., Park, J.-M., Park, H.-S., and Yoon, C. (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials 168, 346-351.