Journal of Physical Activity Research
ISSN (Print): 2576-1919 ISSN (Online): 2574-4437 Website: Editor-in-chief: Peter Hart
Open Access
Journal Browser
Journal of Physical Activity Research. 2018, 3(2), 96-101
DOI: 10.12691/jpar-3-2-6
Open AccessArticle

Short-term Effects of Whey, Creatine, and L-carnitine Supplementation on Muscle Hypertrophy Marker Candidates in Young Males: A Randomized Placebo-controlled Pilot Study

Bagus Sarmito1, Felicia Kartawidjajaputra2, and Antonius Suwanto1

1Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia

2Nutrifood Research Center, PT Nutrifood Indonesia, Jakarta, Indonesia

Pub. Date: October 29, 2018

Cite this paper:
Bagus Sarmito, Felicia Kartawidjajaputra and Antonius Suwanto. Short-term Effects of Whey, Creatine, and L-carnitine Supplementation on Muscle Hypertrophy Marker Candidates in Young Males: A Randomized Placebo-controlled Pilot Study. Journal of Physical Activity Research. 2018; 3(2):96-101. doi: 10.12691/jpar-3-2-6


Previous research showed that resistance exercise could induce muscle development, noticeably from the increased level of several markers from blood samples. However, no study had been performed to explore the effect of combination of resistance exercise and proper nutrition supply on those markers. The aim of this study to investigate the effect of whey protein, creatine, and L-carnitine; on potential molecular markers of muscle hypertrophy (arg1 and mmp9) from blood samples. Twelve healthy male participants were randomly categorized into supplement (SUPP) or placebo (PLAC) treatment, and performed resistance training three times in a one-week period. Blood sampling was carried out before (day one) and 2 hours after the exercise (day one, day three and day five). The level of mmp9 gene expression was increased along with the progress of the resistance training program. Moreover, participants who received supplementation (SUPP) showed a higher level of mmp9 gene expression compared to resistance training only (PLAC). A significant difference was observed between two treatments in the first day, 2 hours after the resistance training session (p = .04); and between SUPP group on the fifth day, 2 hours after the resistance training; compared to the first day, before the resistance training session (p = .02). The effect was not observed on arg1 gene. A combination of resistance training with supplementation; was considered to enhance the muscle hypertrophy process, compared to resistance training only. The results also suggested that mmp9 could act as a blood-derived molecular marker of muscle hypertrophy.

muscle hypertrophy resistance training whey protein L-carnitine mmp9 arg1

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Deldicque, L., Atherton, P., Patel, R., Theisen, D., Nielens, H., Rennie, M. J., & Francaux, M. (2008). Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. Journal of Applied Physiology, 104: 371-378.
[2]  Hulmi, J. J., Kovanen, V., Selänne, H., Kraemer, W. J., Häkkinen, K., & Mero, A. A. (2009). Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids, 37: 297-308.
[3]  Olsen, S., Aagaard, P., Kadi, F., Tufekovic, G., Verney, J., Olesen, J. L., Suetta, C., Kjær, M. (2006). Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. The Journal of Physiology, 573: 525-534.
[4]  Carlson, L. A., Tighe, S. W., Kenefick, R. W., Dragon, J., Westcott, N. W., & LeClair, R. J. (2011). Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise. European Journal of Applied Physiology, 111: 2919-2929.
[5]  Morris, S. M. Jr. (2007). Arginine metabolism: boundaries of our knowledge. Journal of Nutrition, 137: 16025-16095.
[6]  Vierck, J., O’Reilly, B., Hossner, K., Antonio, J., Byrne, K., Bucci, L., & Dodson, M. (2000). Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biology International, 24: 263-272.
[7]  Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of Strength and Conditioning Research, 24: 2857-2872.
[8]  Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3, a004978.
[9]  Niyibizi, C., Chan, R., Wu, J. J., & Eyre, D. (1994). A 92 kDa gelatinase (MMP-9) cleavage site in native type V collagen. Biochemical and Biophysical Research Communications, 202: 328-333.
[10]  Delclaux, C., Delacourt, C., d’Ortho, M., Boyer, V., Lafuma, C., & Harf, A. (1996). Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. American Journal of Respiratory Cell and Molecular Biology, 14: 288-295.
[11]  Morgan, J., Rouche, A., Bausero, P., Houssaïni, A., Gross, J., Fiszman, M. Y., & Alameddine, H. S. (2010). MMP-9 overexpression improves myogenic cell migration and engraftment. Muscle & Nerve, 42: 584-595.
[12]  Farnfield, M. M., Carey, K. A., Gran, P., Trenerry, M. K., & Cameron-Smith, D. (2009). Whey protein ingestion activates mTOR-dependent signaling after resistance exercise in young men: a double-blinded randomized controlled trial. Nutrients, 1: 263-275.
[13]  Dangott, B., Schultz, E., & Mozdziak, P. E. (1999). Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy. International Journal of Sports Medicine, 20: 13-16.
[14]  Volek, J. S., Kraemer, W. J., Rubin, M. R., Gómez, A. L., Ratamess, N. A., & Gaynor, P. (2002). L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. American Journal of Physiology. Endocrinology and Metabolism, 282: E474-E482.
[15]  Kraemer, W. J., Volek, J. S., French, D. N., Rubin, M. R., Sharman, M. J., Gómez, A. L., Ratamess, N. A., Newton, R. U., & Häkkinen, K. (2003). The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery. Journal of Strength and Conditioning Research, 17: 455-462.
[16]  Erskine, R. M., Williams, A. G., Jones, D. A., Stewart, C. E., & Degens, H. (2014). The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scandinavian Journal of Medicine and Science in Sport, 24: 642-648.
[17]  Moran, C. N., Yang, N., Bailey, M. E. S., Tsiokanos, A., Jamurtas, A., MacArthur, D. G., North, K., Pitsiladis, Y. P., & Wilson, R. H. (2007). Association analysis of the ACTN3 R577X polymorphism and complex quantitative body competition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics, 15: 88-93.
[18]  Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408.
[19]  Bosco, M. C., Puppo, M., Santangelo, C., Anfosso, L., Pfeffer, U., Fardin, P., Battaglia, F., & Varesio, L. (2006). Hypoxia modifies the transcriptome of primary human monocytes: Modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. The Journal of Immunology, 177: 1941-1955.
[20]  Sullivan, B. E., Carroll, C. C., Jemiolo, B., Trappe, S. W., Magnusson, S. P., Døssing, S., Kjaer, M., & Trappe, T. A. (2009). Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression. Journal of Applied Physiology, 106: 468-475.
[21]  He, Y. Y., Cai, B., Yang, Y. X., Liu, X. L., & Wan, X. P. (2009). Estrogenic G protein-coupled receptor 30 signaling is involved in regulation of endometrial carcinoma by promoting proliferation, invasion potential, and interleukin-6 secretion via the MEK/ERK mitogen-activated protein kinase pathway. Cancer Science, 100: 1051-1061.
[22]  Lewis, M. P., Tippett, H. L., Sinanan, A. C. M., Morgan, M. J., & Hunt, N. P. (2000). Gelatinase-B (Matrix Metalloproteinase-9; MMP-9) secretion is involved in the migratory phase of human and murine muscle cell cultures. Journal of Muscle Research and Cell Motility, 21: 223-233.
[23]  Chazaud, B., Sonnet, C., Lafuste, P., Bassez, G., Rimaniol, A., Poron, F., Authier, F., Dreyfus, P. A., & Gherardi, R. K. (2003). Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. The Journal of Cell Biology, 163: 1133-1143.
[24]  Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I., & Quigley, J. P. (2007). Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104: 20262-20267.
[25]  Tidball, J. G., & Villalta, S. A. (2010). Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298: R1173-R1187.
[26]  Natale, V. M., Brenner, I. K., Moldoveanu, A. I., Vasiliou, P., Shek, P., & Shepard, R. J. (2003). Effects of three different types of exercise on blood leukocytes count during and following exercise. Sao Paulo Medical Journal, 121: 9-14.
[27]  Rusu, D., Drouin, R., Pouliot, Y., Gauthier, S., & Poubelle, P. E. (2009). A bovine whey protein extract can enhance innate immunity by priming normal human blood neutrophils. Journal of Nutrition, 139: 386-393.
[28]  Saint-Sauveur, D., Gauthier, S. F., Boutin, Y., & Montoni, A. (2008). Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fraction. International Dairy Journal, 18: 260-270.
[29]  Rusu, D., Drouin, R., Pouliot, Y., Gauthier, S., & Poubelle, P. E. (2010). A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-κB- and MAPK-dependent mechanism. Journal of Nutrition, 140: 382-391.
[30]  Kim, K. C., & Lee, C. H. (2005). MAP kinase activation is required for the MMP-9 induction by TNF-stimulation. Archives of Pharmacal Research, 28: 1257-1262.
[31]  Srivastava, A. K., Qin, X., Wedhas, N., Arnush, M., Linkhart, T. A., Chadwick, R. B., & Kumar, A. (2007). Tumor Necrosis Factor-α augments Matrix Metalloproteinase-9 production in skeletal muscle cells through the activation of Transforming Growth Factor-β-activated Kinase 1 (TAK1)-dependent signaling pathway. The Journal of Biological Chemistry, 282: 35113-35124.
[32]  İzgüt-Uysal, V. N., Ağaç, A., Karadoğan, İ., & Derin, N. (2003). Effects of L-carnitine on neutrophil functions in aged rats. Mechanisms of Ageing and Development, 124: 341-347.
[33]  Thangasamy, T., Subathra, M., Sittadjody, S., Jeyakumar, P., Joyee, A. G., Mendoza, E., & Chinnakkanu, P. (2008). Role of L-carnitine in the modulation of immune response in aged rats. Clinica Chimica Acta, 389: 19-24.
[34]  Conti, P., Reale, M., Stuard, S., Spoto, G., Picerno, F., Ferrara, T., Placido, F. C., Barbacane, R. C., Albertazzi, A., & Errichi, B. M. (1994). Reduced human lymphocyte blastogenesis and enhancement of adenosine triphosphate (ATP) by L-carnitine. Molecular and Cellular Biochemistry, 131: 1-8.
[35]  Kouttab, N. M., & Simone, C. D. (1993). Modulation of cytokine production by carnitine. Mediators of Inflammation, 2: S25-S28.
[36]  Santos, R. V. T., Bassit, R. A., Caperuto, E. C., & Costa Rosa, L. F. B. P. (2004). The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life Sciences, 75: 1917-1924.
[37]  Deminice, R., Rosa, F. T., Franco, G. S., Jordao, A. A., & de Freitas, E. C. (2013). Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition, 29: 1127-1132.
[38]  Bassit, R. A., Curi, R., & Costa Rosa, L. F. B. P. (2008). Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids, 35: 425-431.
[39]  Nosarev, A. V., Smagliy, L. V., Anfinogenova, Y., Popov, S. V., & Kapilevich, L. V. (2015). Exercise and NO production: relevance and implications in the cardiopulomonary system. Frontiers in Cell and Developmental Biology, 2: 1-9.
[40]  Jungersten, L., Ambring, A., Wall, B., & Wennmalm, Å. (1997). Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. Journal of Applied Physiology, 82: 760-764.
[41]  Sessa, W. C., Pritchard, K., Seyedi, N., Wang, J., & Hintze, T. H. (1994). Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circulation Research, 74: 349-353.
[42]  Rigamonti, E., Touvier, T., Clementi, E., Manfredi, A. A., Brunelli, S., & Rovere-Querini, P. (2013). Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. The Journal of Immunology, 190: 1767-1777.
[43]  Larkin, K. A., MacNeil, R. G., Dirain, M., Sandesara, B., Manini, T. M., & Buford, T. W. (2012). Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Medicine and Science in Sports and Exercise, 44: 2077-2083.
[44]  Niess, A. M., Sommer, M., Schlotz, E., Northoff, H., Dickhuth, H. H., & Fehrenbach, E. (2000). Expression of the inducible nitric oxide synthase (iNOS) in human leukocytes: responses to running exercise. Medicine and Science in Sports and Exercise, 32: 1220-1225.