Journal of Ocean Research
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/jor Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Journal of Ocean Research. 2015, 3(1), 1-13
DOI: 10.12691/jor-3-1-1
Open AccessReview Article

The Importance of Marine Genomics to Life

Popoola Raimot Titilade1, and Elegbede Isa Olalekan2

1Department of Marine Sciences, University of Lagos, Lagos, Nigeria

2Department of Environmental Planning, Brandenburg University of Technology, Cottbus-Senftenberg, Germany

Pub. Date: April 28, 2015

Cite this paper:
Popoola Raimot Titilade and Elegbede Isa Olalekan. The Importance of Marine Genomics to Life. Journal of Ocean Research. 2015; 3(1):1-13. doi: 10.12691/jor-3-1-1

Abstract

Genomics is a field of study that is rapidly transforming many areas of biological and biomedical research which has enabled the transition from sequential studies of single genes to more ecological approach, involving the simultaneous study of many components and their interactions with the environment from pathways, through cell tissues to whole organisms and communities. Genomics application areas include clinical diagnostics, agro biotechnology, environmental biotechnology and pharmacogenomics. The focus of most genome research is on the nuclear genome, though mitochondrial genomes have been extremely useful for the identification of fish species and populations. Marine microbial assemblages are diverse and unique and the challenge is to discover what functions are played by these microorganisms. To provide adequate tools for marine biologists, therefore, one important aim will be to develop genomic approaches, such as whole genome sequencing and functional genomics, for key species across the evolutionary tree of marine organisms. Genomics is a highly dynamic research field. Hence, rapid developments in genomics can afford new opportunities for applications in marine environment, particularly in the areas of Fish genome resources conservation and genetic enhancement.

Keywords:
genomes genetic enhancement genome sequencing marine evolution medicine

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 9

References:

[1]  Aardema, M. and MacGregor, J. (2002). Toxicology and genetic toxicology in the new era of ‘‘toxicogenomics’’: impact of ‘‘-omics’’ technologies. Mut. Res. 499: 13-25.
 
[2]  Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2008). Molecular biology of the cell garland. Science. 64: 69-114.
 
[3]  Beja, O., Aravind, l., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, l. P. and Jovanovich, S. B. (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 289: 1902-1906.
 
[4]  Chandonia, J. M. and Brenner, S. E. (2006). "The impact of structural genomics: expectations and outcomes". Science. 311 (5759): 347-351.
 
[5]  Colin, S., Deniaud, E., Jam, M., Descamps, V., Chevolot, Y., Kervarec, N., Yvin, J. C., Barbeyron, T., Michel, G. and Kloareg, B. (2006). Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans. Glycobiology. 16: 1021-1032.
 
[6]  Davidson, E. H. (2010). Emerging properties of animal gene regulatory networks. Nature. 468: 911-920.
 
[7]  Davis, R. H. (2004). The age of model organisms. Nat. Rev. Genet. 5: 69-76.
 
[8]  DeLong, E. F., Preston, C. M., Mincer, T., Rich, V., Hallam, S. J., Frigaard, N-U., Martinez, A., Sullivan, M. B., Edwards, R., Brito, B. R., Chisholm, S. W. and Karl, D. M. (2006). Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 311: 496-503.
 
[9]  F. A. O. (2006). State of World Aquaculture: FAO Fisheries Department. Rome. 24pp.
 
[10]  Farr, S. and Dunn, R. T. (1999). Gene expression applied to toxicology. Toxicol. Sci. 50: 1-9.
 
[11]  Flament, D., Barbeyron, T., Jam, M., Potin, P., Czjzek, M., Kloareg, B. and Michel, G. (2007). Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Appl. Environ. Microbiol. 73: 4691-4694.
 
[12]  Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L. and Schuster, S. C. (2008). Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. 105: 3805-3810.
 
[13]  Gibson, G. and Muse, S. V. (2007). A primer of genome science (3rd Ed.). Sunderland, MA: Sinauer Associates, 122pp.
 
[14]  Gilbert, J. A., Field, D., Huang, Y., Edwards, R., Li, W., Gilna, P. and Joint, I. (2008). Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS ONE. 3(8): 3042.
 
[15]  Glöckner, F. O., Kube, M., Bauer, M., Teeling, H., Lombardot, T. and Ludwig, W. (2003). Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl. Acad. Sci. 100: 8298-8303.
 
[16]  Gracey, A. Y. and Cossins, A. R. (2003). Application of microarray technology in environmental and comparative physiology. Annu. Rev. Physiol. 65: 231-258.
 
[17]  Gupta, P. K. (2008). Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26: 602-611.
 
[18]  Hall, N. (2007). Advanced sequencing technologies and their wider impact in microbiology. J. Exp. Biol. 210: 1518-1525.
 
[19]  Hollywood, K., Brison, D. R. and Goodacre, R. (2006). Metabolomics: current technologies and future trends. Proteomics 6: 4716-4723.
 
[20]  Johnson, D. E. and Wolfgang, H. I. (2000). Predicting human safety: screening and computational approaches. Drug Discov. Today. 5: 445-454.
 
[21]  Joshua, L. and Alexa, T. Mc. (2001). "'Ome Sweet 'Omics--A genealogical treasury of words". The Scientist. 15: p7.
 
[22]  Joyce, A. R. and Palsson, B. Ø. (2006). The model organism as a system integrating ‘omics’ data sets. Nature Rev. Mol. Cell. Biol. 7: 98-210.
 
[23]  Kasper, P., Oliver, G., Silva-Lima, B., Singer, T. and Tweats, D. (2005). Joint EFPIA/CHMP SWP workshop: the emerging use of omic technologies for regulatory non-clinical safety testing. Pharmacogenomics. 6: 181-184.
 
[24]  Leu, J. H., Chang, C. C., Wu, J. L., Hsu, C. W., Hirono, I., Aoki, T., Juan, H. F., Lo, C. F., Kou, G. H. and Huang, H. C. (2007). Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected penaeus monodon. BMC Genomics. 8: 120-133.
 
[25]  Leu, J. H., Chen, S. H., Wang, Y. B., Chen, Y. C., Su, S. Y., Lin, C. Y., Ho, J. M. and Lo, C. F. (2010). A review of the major penaeid shrimp EST studies and the construction of a shrimp transcriptome database based on the ESTs from four penaeid shrimp. 65pp.
 
[26]  Lighner, D. V. and Redman, R. M. (1998): Shrimp disease and current diagnostic methods. Aquaculture. 164: 201-220.
 
[27]  Lord, P. G. (2004). Progress in applying genomics in drug development. Toxicol. Lett. 149: 371-375.
 
[28]  Lucien-Brun, H. (1997). Evolution of world shrimp production. Fisheries and Aquaculture. World Aquaculture. 28: 21-33.
 
[29]  MacGregor, J. T. (2003). The future of regulatory toxicology: impact of the biotechnology revolution. Mutat. Res. 75: 236-248.
 
[30]  MacGregor, J. T., Farr, S., Tucker, J. D., Heddle, J. A., Tice, R. R. and Turteltaub, K. W. (1995). New molecular endpoints and methods for routine toxicity testing. Fundam. Appl. Toxicol. 26: 156-173.
 
[31]  Margulies, M., Egholm, M., Altman, W. E. and Attiya, S. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature. 437: 376-380.
 
[32]  Markert, S., Arndt, C. and Felbeck, H. (2007). Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science. 315: 247-250.
 
[33]  McKusick VA, Ruddle FH (1987) A new discipline, a new name, a new journal. Genomics. 1: 1-2.
 
[34]  Metzker, M. L. (2010). Sequencing technologies-the next generation. Nat. Rev. Genet. 11: 31-46.
 
[35]  Meyer, F. (2006). Genome Sequencing vs. Moore's Law: Cyber challenges for the next decade. CTWatch Quarterly. 2: 14-17.
 
[36]  Michel, G., Helbert, W., Kahn, R., Dideberg, O. and Kloareg, B. (2003). The structural bases of the processive degradation of iota-carrageenan, a main cell wall polysaccharide of red algae. J. Mol. Biol. 334: 421-433.
 
[37]  N. A. S. (2007). The new science of metagenomics: revealing the secrets of our microbial planet. ISBN: 0-309-10677-X 170pp.
 
[38]  Nuwaysir, E. F., Bittner, M., Trent, J., Barrett, J. C. and Afshari, C. A. (1999). Microarrays and toxicology: the advent of toxicogenomics. Mol. Carcinogenesis. 24: 153-159.
 
[39]  Peterson, R. L., Casciotti, L., Block, L., Goad, M. E., Tong, Z., Meehan, J. T., Jordan, R. A., Vinlove, M. P., Markiewicz, V. R., Weed, C. A. and Dorner, A. J. (2004). Mechanistic toxicogenomic analysis of WAY-144122 administration in Sprague-Dawley rats. Toxicol. Appl. Pharmacol. 196: 80-94.
 
[40]  Petricoin, E. F., Hackett, J. L., Lesko, L. J., Puri, R. K., Gutman, S. I., Chumakov, K., Woodcock, J., Feigal, D. W., Zoon, K. C. and Sistare, F. D. (2002). Medical applications of microarray technologies: a regulatory science perspective. Nat. Genet., 32: 474-479.
 
[41]  Pevsner, J. (2009). Bioinformatics and functional genomics (2nd Ed.). Hoboken, NJ, 7: Wiley-Blackwell, 15pp.
 
[42]  Rappé, M. S., Connon, S. A., Vergin, K. L. and Giovannoni, S. J. (2002). Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature. 418: 630-633.
 
[43]  Ray, G. C. (1988). Ecological diversity in coastal zones and oceans. In E. O. Wilson, ed. Biodiversity. Washington, D.C.: National Academy Press, 36-50.
 
[44]  Rodi, C. P., Bunch, R. T., Curtiss, S. W., Kier, L. D., Cabonce, M. A., Davila, J. C., Mitchell, M. D., Alden, C. L. and Morris, D. L. (1990). Revolution through genomics in investigative and discovery toxicology. Toxicol. Pathol. 27: 107-110.
 
[45]  Rogers, Y. H. and Venter, J. C. (2005). Genomics: massively parallel sequencing. Nature. 437: 326-327.
 
[46]  Schena, M., Heller, R. A. Theriault, T. P., Konrad, K., Lachenmeier, E., and Davis, R. W. (1998). Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol. 16: 301-306.
 
[47]  Schweder, T., Markert, S. and Hecker, M. (2008). Proteomics of marine bacteria. Electrophoresis. 29: 2603-2616.
 
[48]  Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nat. Biotechnol. 26: 1135-1145.
 
[49]  Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M. and Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl. Acad. Sci. USA 103: 12115-12120.
 
[50]  Supungul, P., Klinbunga, S., Pichyangkura, R., Jitrapakdee, S., Hirono, I., Aoki, T. and Tassanakajon, A. (2002): Identification of immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Mar Biotechnol. 4: 487-494.
 
[51]  Szalay, A., and Gray, J. (2006). 2020 Computing: Science in an exponential world. Nature. 440: 413-414.
 
[52]  Ten Bosch, J. R. and Grody, W. W. (2008). Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J. Mol. Diagn. 10: 484-492.
 
[53]  Thomas, M.A. and Klaper, R. (2004). Genomics for the ecological toolbox. Trends Ecol. Evol. 19: 439-445.
 
[54]  Ulrich, R. and Friend, S. H. (2002). Toxicogenomics and drug discovery: will new technologies help us produce better drugs? Nat. Rev. Drug Discov. 1: 84-88.
 
[55]  Van Straalen, N. M. and Roelofs, D. (2006). An introduction to ecological genomics. Oxford University Press, Oxford. Pp85.
 
[56]  Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. W. U. (2004). Environmental genome shotgun sequencing of the Sargasso Sea”. Science. 304: 66-74.
 
[57]  Wilkening, J., Wilke, A. N. D. and Folker, M. (2009). Using Clouds for Metagenomics: A Case Study. In: Proceedings IEEE Clouds. 12-19.
 
[58]  Worm,W., Barbier, E. B. and Beaumont, N. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787-790.
 
[59]  Yooseph, S., Sutton, G., Rusch, D. B., Halpern, A. L., Williamson, S. J. and Remington, K. (2007). The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS. Biol. 5: 16pp.
 
[60]  Zengler, K., Toledo, G., Rappé, M. S., Mathur, E. J., Short, J. M. and Keller, M. (2002). Cultivating the uncultured. Proc. Natl. Acad. Sci. U. S. A. 99: 15681-15686.