Journal of Ocean Research
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: http://www.sciepub.com/journal/jor Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Journal of Ocean Research. 2014, 2(1), 5-10
DOI: 10.12691/jor-2-1-2
Open AccessArticle

Parametric Study on Vessel Body Lines Modeling to Optimize Seakeeping Performance

Mohsen Khosravi Babadi1 and Hassan Ghassemi1,

1Department of Ocean Engineering, AmirKabir University of Technology, Tehran, Iran

Pub. Date: May 19, 2014

Cite this paper:
Mohsen Khosravi Babadi and Hassan Ghassemi. Parametric Study on Vessel Body Lines Modeling to Optimize Seakeeping Performance. Journal of Ocean Research. 2014; 2(1):5-10. doi: 10.12691/jor-2-1-2

Abstract

In this paper abody lines modeling algorithm for a corvettevesselis presented. In the algorithm seakeeping performance improved by variation in water-plane area coefficient (CWP) and consequently the vessel body lines modified. Fuzzy method used to body line modeling which the variation of CWP does not make change of the other geometric parameters (CP, CB, Cm, L and B). In this method, the impact of CWP changes on the rate of seakeeping parameter’s improvement has been studied and seakeeping performance index (SPI) defined as objective functions. Optimum value of seakeeping collective improvement obtained for the vessel body lines, using multi-objective genetic algorithms optimization (GA). Obviously, this method can be efficient in assuming that the other vessel geometrical coefficients are optimum.

Keywords:
Fuzzy modeling Genetic algorithms optimization sea-keeping water-plane area coefficient

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 13

References:

[1]  G. J. Grigoropoulos, “Hull Form Optimization for Hydrodynamic Performance,” Marine Technology, Vols. 41, No.4, pp. 167-182, (2004).
 
[2]  G. K. Kapsenberg, “Finding the Hullform for Given Seakeeping Characteristics,” MARIN, Wageningen, the Netherlands; IMAM, (2005).
 
[3]  J. Aranda, R. Munoz, S. D. Canto, J. M. Díaz and D. S. Bencomo, “An Analysis of Modes Identification Methods for High Speed Crafts,” Journal of Maritime Research, vol. 11, pp. 51-67, (2005).
 
[4]  E. Sarioz, “Inverse Design of Ship Hullforms for Seakeeping,” Ocean Engineering, vol. 36, pp. 1386-1395, (2009).
 
[5]  J. Journée and L. Adegeest, “Theoretical Manual of Strip Theory Program “SEAWAY for Windows”,” Ship Hydromechanics Laboratory Delft University of Technology, Amarcon, (2003).
 
[6]  F. Alarrcin,U. Bugra Celebi,S. Ekinci and D. Ünsalan, “Neural Networks Based Analysis of Ship Roll Stabilization,”3rd International Conference on Maritime and Naval Science and Engineering, pp.217-220, (2010).
 
[7]  M. R. Davis and D. S. Holloway, “The Influence of Hullform on the Motions of High-speed Vessels in Head Seas,” Ocean Engineering, vol. 30, pp. 2091-2115, (2003).
 
[8]  A. Sayli, A. Dursun A. and O. Ganiler, “Nonlinear meta- models for conceptual seakeeping design of fishing vessels,” Ocean Engineering, (2010).
 
[9]  T. Cepowski, “Determination of optimum hull form for passenger car ferry with regard to its sea-keeping qualities and additional resistance in waves,” Polish Maritime Research, 2 (56) Vol 15, pp. 3-11, (2008).
 
[10]  T. Cepowski, “On the modeling of car passenger ferryship design parameters with respect to selected sea-keeping qualities and additional resistance in waves,” Polish Maritime Research, 3 (61) Vol 16, pp. 3-10, (2009).
 
[11]  D. Winyall, J. Edwards and A. Brown, “3D Hullform Modeling to Support Naval Ship Design Synthesis and Multi-Objective Optimization,” International Ship Design Conference (ISDC), Glasgow, Scotland, (2012).
 
[12]  M. K. Babadi, H. Ghassemi , “Effect of hull form coefficients on the vessel sea-keeping performance” Journal of Marine Science and Technology,Taiwan, Vol. 21, NO.5, 2013.