Journal of Ocean Research
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Journal of Ocean Research. 2019, 4(1), 6-19
DOI: 10.12691/jor-4-1-2
Open AccessArticle

The PETM Extreme Climate Impact on the Benthic Foraminiferal Traits and Ecological Functioning in the Tropical Pacific Ocean

Celestine Nwojiji1, 2, , Bryony Caswell3 and Fabienne Marret1

1School of Environmental Sciences, University of Liverpool, L69 7ZT, UK

2Department of Geology, Ebonyi State University, Abakaliki, Nigeria

3School of Environmental Science, University of Hull, HU6 7RX, UK

Pub. Date: December 25, 2019

Cite this paper:
Celestine Nwojiji, Bryony Caswell and Fabienne Marret. The PETM Extreme Climate Impact on the Benthic Foraminiferal Traits and Ecological Functioning in the Tropical Pacific Ocean. Journal of Ocean Research. 2019; 4(1):6-19. doi: 10.12691/jor-4-1-2


Foraminifera are marine microorganisms which provide essential ecological functions in the oceans. They are very sensitive to the physio-chemical changes in the marine environment and tend to incorporate the changes in the environment they lived into their test during calcification. The records of the changes in their test serves as a black box for the changes in ocean ecology over time. In view of current changes in the global marine ecosystem as a result of anthropogenic and natural pressures, it is important to understand the reaction of foraminifera (both at the community level and individual attributes) to the late Palaeocene - early Eocene hyperthemal event [the Palaeocene-Eocene thermal maximum (PETM)]. The PETM was a global warming event that occurred 55 million years ago. It resulted in the acidification of the deep sea, shoaling of the lysocline and Carbon Compensation Depth (CCD), massive extinction of benthic foraminifera as well as diversification and migration of both marine and terrestrial organisms. This study used Biological Trait Analysis (BTA) to understand the changes in foraminiferal population and trait composition during the PETM. The results from this study demonstrated that BTA techniques could be used to detect ecological disturbance based on non-metric multi-dimensional scaling (nmMDS) ordination. The nmMDS ordination of all the studied sites showed wider separation during environmental disturbance [period of negative Carbon Isotopic Excursion (CIE)] compared to other intervals. Thirteen (13) foraminiferal traits and over 60 trait categories were perceived to be crucial for the foraminiferal ecological functioning in the marine environment. However, BTA recognised test composition, chamber arrangement/ shape, ornamentation, primary aperture position, perforations and living/feeding habit as the most important foraminiferal trait in the benthic ecosystem. Traits such infauna and sessile life habits; cylindrical elongate and bi-triserial test forms; complex terminal apertures and omnivorous feeding modes were the most resilient traits during the hyperthermal.

PETM benthic foraminifera palaeooceanography palaeocology extreme climate biological traits

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B. Ferrer, E. A. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471: 51-57.
[2]  Intergovernmental Panel on Climate Change. (2018). An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, Switzerland, 1535p.
[3]  Caswell, B.C. and Frid, C. L. J. (2017). Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event. Oecologia, 1-16.
[4]  Zeebe, R. and Zachos, J.C. (2013). Long-term legacy of massive carbon input to the Earth system: Anthropocene vs. Eocene. Phil. Trans. Royal Soc. A371: 29-31.
[5]  Frid, C. L. J and Caswell B. A. (2015). Is long-term ecological functioning stable: The case of the marine benthos? Journal of Sea Research 98: 15-23.
[6]  Rogner, H.H. (1997). An assessment of world hydrocarbon resources. Annual Review of Energy and the Environment, 22: 217-262
[7]  Zeebe, R., Ridgwell, A. and Zachos J.C. (2016). Anthropogenic carbon release rate unprecedented during past 66 million years. Nat. Geosci. 9, 1-5.
[8]  Foster, G. L., Hull, P., Lunt, D.J., Zachos, J.C. (2018). Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Phil. Trans. R. Soc. A 376: 20170086.
[9]  Schmidt, D. N., Thomas, E., Authier, E., Saunders, D. and Ridgwell, A. (2018). Strategies in times of crisis—insights into the benthic foraminiferal record of the Palaeocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376, 1-17, 20170328.
[10]  Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., Mccarren, H., and Kroon, D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum, Science, 308, 1611-1615.
[11]  Penman, D. E., Kirtland-Turner, S., Sexton, P. F., Norris, R. D., Dickson, A. J., Boulila, S; Ridgwell, A., Zeebe, R. E., Zachos, J. C., Cameron, A., Westerhold, T and Rohl, U. (2016). An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 9, 575-580.
[12]  Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N., Pälike, H., et al. (2017). Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548: 573.
[13]  McInerney, F.A.,Wing, S.L., 2011. The Paleocene-Eocene Thermal Maximum - a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Reviews of Earth and Planetary Sciences 39, 489-516.
[14]  Babila, T.L., Penman, D.E., Hönisch, B., Kelly, D.C., Bralower, T.J., Rosenthal, Y. and Zachos, J. C. (2018). Capturing the global signature of surface ocean acidification during the Palaeocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376: 20170072. 1-19.
[15]  Turner, S. K. (2018) Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum. Phil. Trans. R. Soc. A 376: 1-16.
[16]  Kennett, J.P. and Stott, L.D. (1991). Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353: 225-29.
[17]  Thomas, E. and Shackleton, N.J. (1996). The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. In Correlation of the Early Paleogene in Northwest Europe Correlation of the Early Paleogene in Northwest Europe, Spec. Pub. 101, In Knox, R.O., Corfield, R.M., and Dunay, R.E., (Eds.) Washington, DC: Geol. Soc. 401-41.
[18]  Thomas, E. (1998). Biogeography of the late Paleocene benthic foraminiferal extinction. In Aubry, M.-P., Lucas, S.G., and Berggren, W.A., (Eds.), Late Paleocene–Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records: New York (Columbia Univ. Press), 214-243.
[19]  Thomas, E. (2007). Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth?, in: Large Ecosystem Perturbations: Causes and Consequences, edited by: Monechi, S., Coccioni, R., and Rampino, M., Geol. S. Am. S., Boulder, Colorado, The Geological Society of America, 424, 1-23.
[20]  Speijer, R. P., C. Scheibner, P. Stassen, and A.-M. M. Morsi (2012), Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM), Aust. J. Earth Sci., 150(1), 6-12.
[21]  Stassen, P., E. Thomas, and R. P. Speijer (2015), Paleocene–Eocene Thermal Maximum environmental change in the New Jersey Coastal Plain: Benthic foraminiferal biotic events, Mar. Micropaleontol., 115, 1-23.
[22]  Dunkley Jones T., Lunt D. J., Schmidt D. N., Ridgwell, A., Sluijs, A. Valdes P. J., Maslin, M. (2013) Climate model and proxy data constraints on ocean warming across the Palaeocene–Eocene Thermal Maximum. Earth Sci Rev 125: 123-145.
[23]  Cavan, E. L., Henson, S. A., Belcher, A and Sanders, R. (2017). Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences, 14: 177-186.
[24]  Thomas, E.: 2003. Extinction and food at the seafloor: A high-resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Geol. S. Am. S., Boulder, Colorado, The Geological Society of America, 369, 319-332.
[25]  Alegret. L., Ortiz, S and Molina, E. (2009b). Extinction and recovery of benthic foraminifera across the Paleocene- Eocene Thermal Maximum at the Alamedilla section (Southern Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 279: 186-200.
[26]  D’haenens, S., Bornemann, A., Stassen, P. and Speijer, R. (2012). Multiple early Eocene benthic foraminiferal assemblage and δ13C fluctuations at DSDP Site 401 (Bay of Biscay - NE Atlantic): Marine Micropaleontology, 88-89: 15-35.
[27]  Aze, T., Pearson, P. N., Dickson, A. J., Badger, M. P. S., Bown, P. R., Pancost, R. D., Gibbs S. J., Huber, B. T., Leng, M. J., Coe A. L., Cohen, A. S., Foster, G. L. (2014b). Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum. Geology 42, 739-742.
[28]  Giusberti, L., Boscolo Galazzo F. and Thomas E. (2016). Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section). Clim. Past. 12, 213-240.
[29]  Luciani, V., D’Onofrio, R., Dickens, G. R., and Wade, B. S. (2017). Planktic foraminiferal response to early Eocene carbon cycle perturbations in the southeast Atlantic Ocean (ODP Site 1263). Global and Planetary Change, 158, 119-133.
[30]  Twitchett, R. J. (2006). The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events: Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 190-213.
[31]  Bremner, J., C. L. J. Frid & S. I. Rogers, 2005. Biological traits of the North Sea benthos: does fishing affect benthic ecosystem function? American Fisheries Society Symposium 41: 477-489.
[32]  Takeda, K. and K. Kaiho (2007). Faunal turnovers in central Pacific benthic foraminifera during the Paleocene–Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 251(2): 175-197.
[33]  Bralower, T. J. (2002). Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography 17: 1023.
[34]  Bellier, J.P., Mathieu, P., Granier, B. (2010). Short treatise on foraminiferology (Essential on modern and fossil Foraminifera). Carnets de Géologie - Notebooks on Geology, Brest, Book 2010/02 (CG2010_B02), 104p.
[35]  Armstrong, H. A., Brasier, M. D. (2005). Microfossils. Second Edition. Blackwell Publishing. 304p
[36]  Corliss, B.H. and Chen, C. (1988). Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications: Geology, 16: 716-719.
[37]  Boltovskoy, E., Scott, D.B. and Medioli F.S. (1991). Morphological variations of benthic foraminiferal tests in response to changes in ecological parameters: A review J. Paleontol., 65: 175-185.
[38]  Dubicka, Z., Złotnik, M. and Borszcz, T. (2015). Test morphology as a function of behavioral strategies — Inferences from benthic foraminifera. Marine Micropaleontology 116: 38-49.
[39]  Jorissen, F. J., Fontanier, C., and Thomas, E. (2007). Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, in: Proxies in Late Cenozoic Paleoceanography: Pt. 2: Biological tracers and biomarkers, 1, Elsevier, Amsterdam, The Netherlands, 264-325.
[40]  Chevenet, F, Dolédec, S. and Chessel, D. (1994). A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295-309.
[41]  Caswell, B. A. and C. L. J. Frid (2013). "Learning from the past: functional ecology of marine benthos during eight million years of aperiodic hypoxia, lessons from the Late Jurassic." Oikos 122(12): 1687-1699.
[42]  Caswell, B., & Frid, C. (2016). Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event. Oecologia, 1-16.
[43]  Holbourn, A., Henderson, A.S. and Macleod, N. (2013). Atlas of Benthic Foraminifera. Wiley-Blackwell. UK. 642P.
[44]  Bolli, H., Beckmann, J., and Saunders, J. (1994). Benthic foraminiferal biostratigraphy of the South Caribbean region. Cambridge University press 408p.
[45]  Alegret, L. and Thomas, E. (2004). Benthic foraminifera and environmental turnover acrossthe Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic). Palaeogeography, Palaeoclimatology, Palaeoecology, 208(1-2), 59-83.
[46]  Mancin, N., Hayward, B. W., Trattenero, I., Cobianchi, M., and Lupi, C.: 2013. Can the morphology of deep-sea benthic foraminifera reveal what caused their extinction during the mid-Pleistocene Climate Transition? Mar. Micropaleont., 104, 53-70.
[47]  Arreguín-Rodríguez, G. J., L. Alegret, and E. Thomas (2016). Late Paleocene-middle Eocene benthic foraminifera on a Pacific seamount (Allison Guyot, ODP Site 865): Greenhouse climate and superimposed hyperthermal events, Paleoceanography, 31, 346-364.
[48]  Alegret, L. and Thomas, E. (2009). Food supply to the seafloor in the Pacific Ocean after the Cretaceous/Paleogene boundary event. Marine Micropaleontology, 73(1-2), 105-116.
[49]  Winguth, A. M. E. (2011). The Paleocene-Eocene Thermal Maximum: Feedbacks betweenClimate Change and Biogeochemical Cycles. Climate Change - Geophysical Foundations and Ecological Effects. J. Blanco and H. Kheradmand. Rijeka, InTech. 03: 43-64.
[50]  Petrizzo M. R. 2007. The onset of the Paleocene–Eocene Thermal Maximum (PETM) at Sites 1209 and 1210 (Shatsky Rise, Pacific Ocean) as recorded by planktonic foraminifera. Marine Micropaleontology Vol. 63, Issues 3–4, 187-200.
[51]  Griffith, J., Kadin M., Nascimnento F.J.A., Tamelander T., Törnroos A., Bonaglia S., Bonsdorff E., Büchert V., Gårdmanrk A., Järnström M., Kotta J., Lindegren M., Nordström M.C., Norkko A., Olsson J., Weigel B., Zydelis R., Blenckner T., Niiranen S., Winder, M. (2017). The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biology. 23, 2179-2196.
[52]  Bralower, T.J., Premoli Silva, I., and Malone, M.J. (2006). Leg 198 synthesis: a remarkable 120-m.y. record of climate and oceanography from Shatsky Rise, northwest Pacific Ocean. In Bralower, T.J., Premoli Silva, I., and Malone, M.J. (Eds.), Proc. ODP, Sci. Results, 198: College Station, TX (Ocean Drilling Program), 1-47.
[53]  Altenbach, A. V and Sarnthein, M. (1989). Productivity record in benthic Foraminifera, in Berger, W. H., Smetacek, V. S., and Wefer, G. (eds.), Productivity of the Ocean: Present and Past, John Wiley and Sons Ltd., New York, 255-269.
[54]  Heinz, P., D. Ruepp, and C. Hemleben (2004), Benthic foraminifera assemblages at great Meteor Seamount, Marine Biology, 144, 985-998.
[55]  Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22(8), 719-722.
[56]  Keating-Bitonti, C. R and Payne, J. L. (2017). Ecophenotypic responses of benthic foraminifera to oxygen availability along an oxygen gradient in the California Borderland. Mar Ecol.; 38: e12430.