Journal of Optoelectronics Engineering
ISSN (Print): 2372-4773 ISSN (Online): 2372-4781 Website: http://www.sciepub.com/journal/joe Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Journal of Optoelectronics Engineering. 2016, 4(1), 1-4
DOI: 10.12691/joe-4-1-1
Open AccessArticle

Hybrid Raman/Erbium-Doped Fiber Amplifiers for WDM Transmission Systems

Sunil P. Singh1,

1Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur (UP)-228118, India

Pub. Date: February 25, 2016

Cite this paper:
Sunil P. Singh. Hybrid Raman/Erbium-Doped Fiber Amplifiers for WDM Transmission Systems. Journal of Optoelectronics Engineering. 2016; 4(1):1-4. doi: 10.12691/joe-4-1-1

Abstract

As light pulses propagate along the optical fiber, their energy dissipates. Beyond a certain distance the number of photons in pulses becomes too small to be detected. The optical pulses in fibers are energized by utilizing optical fiber amplifiers. The rapid growth of the internet and data traffic in optical fiber communication networks has stimulated the study of wideband optical amplifiers. Widening the bandwidth of fiber amplifiers is the primary issue in enlarging the capacity of wavelength-division multiplexed (WDM) transmission systems. This may be achieved by hybrid Raman/Erbium-doped fiber amplifiers. In this paper hybrid Raman/Erbium-doped fiber amplifier is simulated and almost flat gain of 21 dB is obtained for 1530-1565 nm wavelength range.

Keywords:
hybrid fiber amplifier raman fiber amplifier erbium-doped fiber amplifier WDM

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  T.N. Nielson, “Raman Amplifiers in WDM Systems,” 12th LEOS Annual Meeting, vol. 2, pp. 471-472, 1999.
 
[2]  S. Kawai, H. Masuda, K. Suzuki, and K. Aida, “Wide-Bandwidth and Long-Distance WDM Transmission Using Highly Gain-Flattened Hybrid Amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 7, pp. 886-888, 1999.
 
[3]  W.Y. Oh, S.S. Lee, H. Lee, and W. Seo, “16-Channel C-Band Hybrid Fiber Amplifier Comprising an EDFA and a Single Diode Laser Pumped Dispersion Compensating Raman Amplifier,” European Conf. On Comm., Munich, Germany, 2000.
 
[4]  H. Suzuki, J. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10Gb/s) Super-Dense WDM Transmission with 25-GHz Channel Spacing in the Zero-Dispersion Region Employing Distributed Raman Amplification Technology,” IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 903-905, 2000.
 
[5]  T.N. Nielsen, A.J. Stentz, K. Rottwitt, D.S. Vengsarkar, Z.J. Chen, P.B. Hansen, J.H. Park, K.S. Feder, S. Cabot, S. Stulz, D.W. Peckham, L. Hsu, C.K. Kan, A.F. Judy, S.Y. Park, L.E. Nelson, and L. Gruner-Nielson, “3.28-Tb/s Transmission over 3×100 km Nonzero-Dispersion Fiber Using Dual C- and L-Band Distributed Raman Amplification,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1079-1081, 2000.
 
[6]  A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/Erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett., Vol.13, No.11, pp.1170-1172, 2001.
 
[7]  H.-S. Seo, J. T. Ahn, B. J. Park, and W. J. Chung, “Wideband hybrid amplifier using Er-doped fiber and Raman medium,” ETRI Journal, Vol. 29, No. 6, pp. 779-784, 2007.
 
[8]  Y. Chen, R. Pavlik, C. Visone, F. Pan, E. Gonzales, A. Turukhin, L. Lunardi, D. Al-Salameh, and S. Lumish, “40nm broadband SOA-Raman hybrid amplifier,” Proc. OFC Conf., Anaheim, CA, Paper ThB7, 2002.
 
[9]  H. H. Lee, D. D. Seo, D. Lee, J. S. Han, H. S. Chung, H. J. Lee, and M. J. Chu, “Demonstration of 16 × 10 Gb/s WDM transmissions over 5 × 80 km using gain-clamped semiconductor optical amplifiers in combination with distributed Raman fiber amplifiers as inline amplifiers under dynamic add-drop situations,” IEEE Photon. Technol. Lett., Vol. 15, pp. 1621-1623, 2003.
 
[10]  P. P. Iannone, K. C. Reichmann, X. Zhou, and N. J. Frigo, “200 km CWDM transmission using a hybrid amplifier,” Proc. OFC Conf., Anaheim, CA, Paper OThG3, 2005.
 
[11]  K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA-Raman hybrid amplifiers with 70nm bandwidth,” IEEE Photon. Technol. Lett., Vol. 18, pp. 328 -330, 2006.
 
[12]  P. P. Iannone and K. C. Reichmann, “Hybrid SOA-Raman amplifiers for fiber-to-the-home and metro networks,” Proc. OFC Conf., Paper NTuC1, 2008.
 
[13]  G. P. Agrawal, “Fiber Optic Communication Systems” 3rd Ed. John Wiley, NY, 2002.
 
[14]  H. Afkhami et al. “Wideband Gain Flattened Hybrid Erbium-doped Fiber Amplifier/Fiber Raman Amplifier”, Journal of the Optical Society of Korea, Vol. 14, No. 4, pp. 342-350, 2010.
 
[15]  P. J. Winzer, M. Pfennigbauer, and R. J. Essiambre, “Coherent crosstalk in ultradense WDM system” J. Lightwave Technol., Vol. 23, No. 4, pp. 1734-1744, 2005.
 
[16]  J. B. Khurgin, Xu. Shuangmei, and M. Boroditsky, “Reducing adjacent channel interference in RZ WDM system via dispersion interleaving,” IEEE Photon. Technol. Lett., Vol. 16, No.3, pp. 915-917, 2004.
 
[17]  R. S. Kaler, “Optimization of hybrid Raman/erbium-doped fiber amplifier for multi terabits WDM system”, Optik-International J. for Light and Electron Optics, Vol.124, No.7, pp. 575-578, 2013.