Journal of Optoelectronics Engineering
ISSN (Print): 2372-4773 ISSN (Online): 2372-4781 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Journal of Optoelectronics Engineering. 2015, 3(1), 7-14
DOI: 10.12691/joe-3-1-2
Open AccessArticle

Etching Techniques for Thinning Silicon Wafer for Ultra Thin High Efficiency Interdigitated Back Contact Solar Cells

Iduabo John Afa1, , Gema López1 and Pablo Rafael Ortega Villasclaras1

1Grup de Recerca en Micro i Nanotecnologies (MNT), Universitat Politècnica de Catalunya (UPC), C. Jordi Girona, Barcelona, Spain

Pub. Date: December 18, 2015

Cite this paper:
Iduabo John Afa, Gema López and Pablo Rafael Ortega Villasclaras. Etching Techniques for Thinning Silicon Wafer for Ultra Thin High Efficiency Interdigitated Back Contact Solar Cells. Journal of Optoelectronics Engineering. 2015; 3(1):7-14. doi: 10.12691/joe-3-1-2


High efficiency Interdigitated back contact (IBC) solar cells help reduce the area of solar panels needed to supply sufficient amount of energy for household consumption. We believe that a properly passivated IBC cell with the aid of light trapping schemes can maintain an efficiency of 20% even with thickness under 20 μm. In this work, photolithography and etching techniques are used for deep etching of crystalline Silicon (c-Si) wafer to a thickness less than 20 μm. Tetramethylammoniumhydroxide (TMAH) wet anisotropic etching and plasma based Reactive ion etching (RIE) are used with SPR 220-7.0 and SU-8 photoresists. SiO2 is used as making layer for TMAH etching. TMAH etch of a 4-inch c-Si wafer is done at a temperature of 80°C for 8 hours. RIE of a quarter of a 4-inch c-Si wafer is done for 3 hours using SF6 as reactive gas. A baseline photolithography process flow for SU-8 photoresist deposition was developed. The etch rates of TMAH etch techniques fall within the range of 0.3 – 0.45 μm/min and etch rates for RIE fall within the range of 1.2 – 1.8 μm/min. The RIE shows capability of achieving smaller thickness sizes with greater advantages than the TMAH etching technique.

IBC solar cells masked etching photolithography reactive-ion etch and tMAH etching

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Verlinden P 2012 Simple power-loss analysis method for high-efficiency interdigitated back contact (IBC) silicon solar cells, Proc. 2nd SiliconPV conf., Leuven, Belgium.
[2]  Papet, P., Nichiporuk, O., Fave, A., Kaminski, A., Bazer-Bachi, B., Lemiti, M., 2006 “TMAH texturisation and etching of interdigitated back-contact solar cells”, Materials Science-Poland, 24(4): 1043-1049.
[3]  López G, Ortega PR, Voz C, Martín I, Colina M, Morales A B, Orpella A and Alcubilla R, 2013 Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates, Beilstein J Nanotech 4 726-731.
[4]  Lammert MD, Schwartz RJ, 1977 The Interdigitated Back Contact Solar Cell: A Silicon solar cell for use in concentrated sunlight, IEEE Trans. Electron. Dev., 24, 337-342.
[5]  Beck FJ, Mokkapati S, and Catchpole KR 2010 Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles, Prog. Photovolt. Res. Appl. 18 500-504 (2010).
[6]  Carrio, D., Ortega, P., Lopez, G., Lopez-Gonzalez, J.M., Martin, I., Alcubilla, R. 2013 “3D simulations of back-contact back-junction c-Si(P) solar cells with doped point contacts”, EU PVSEC, 2CV 3.44.
[7]  Ortega, P., Martin, I., Lopez, G., et al 2012 “p-type c-Si solar cells based on rear side laser processing of Al2O3/SiCx stacks”, Solar Energy Materials and Solar Cells, 106: 80-83.
[8]  Lopez, G., Ortega, Voz C., et al 2013 “Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates”, Proc. E-MRS Spring Meeting, Strasbourg, France.
[9]  Tabata, O., 1996 “PH-controlled TMAH etchants for silicon micromachining”, Sensors and Actuators A, 53: 335-339.
[10]  Sakaino, K., Adachi, S., 2001 “Study of Si(100) surfaces etched in TMAH solution”, Sensors and Actuators A, 88: 71-78.
[11]  Gui-zhen Y., Chan, P.C.H., Hsing, I.M., Sharma, R.K, Sin, J.K.O., 2001 “An improved TMAH Si etching solution without attacking exposed Aluminum”, Sensors and Actuators A, 89: 135-141.
[12]  Jahns J, Helfert S. 2001 Introduction Micro- and Nanooptics, (Weinheim: Wiley) p. 187.
[13]  Taylor, R.F., Schultz, J.S. 1996 Handbook of Chemistry and Biological Sensors, (IOP: Bristol) pp. 49-51.
[14]  Sonphao W, Chaisirikul S 2001 Silicon anisotropic etching of TMAH solution. Proc. IEEE Intl. Sym. Indust. Elect. (ISIE), Pusan, 2049-2052.
[15]  Abgrall P, Nguyen N, 2009 Nanofluidics, (Norwood: Artech House) p. 94.
[16]  Tabata O, Asahi R, Funabashi H, Sugiyama S 1991 Anisotropic etching of Silicon (CH/sub 3/)/sub 4/NOH solutions. Intl. Conf. Solid-State Sens. Actuators, 24 June, San Francisco, 811 – 814.
[17]  Emirov Y, Belyaev A, Cruson D, Tarasov I, Kumar A, Wu H, Melkote S, Ostapenko S, 2011 Pinhole detection in Si solar cells using Resonance Ultrasonic vibrations. 37th IEEE Photovoltaic Specialists conference (PVSC), 19th June, Seattle 002161-002163.
[18]  Scheibe C, and Obermeier E, 1995 Compensating corner undercutting in anisotropic etching of (100) Silicon for chip separation. J Micromech. Microeng. 5 109.
[19]  Li, Y.X., French, P.J., Wolffenbuttel, R.F., 1995 “Selective reactive ion etching of Silicon nitride over silicon using CHF3 with N2 addition”, J. Vac. Sci. Technol. B, 13(5): 2008-2012.
[20]  J Yoo et al 2008 RIE texturing optimization for thin c-Si solar cells in SF6/O2 plasma, J Phys. D: App Phys., 41 125205.
[21]  Jansen H, Gardeniers H, de Boer M, Elwenspoek M, Fluitman J 1996 A survey on the reactive ion etching of silicon in microtechnology. J Micromech. Microeng. 6 14-28.
[22]  Lysevych, M., Tan, H.H., Karouta, F., Jagadish, C., 2011 “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry”, J. Electrochem. Soc., 158(3): H281-H284.