Journal of Optoelectronics Engineering
ISSN (Print): 2372-4773 ISSN (Online): 2372-4781 Website: http://www.sciepub.com/journal/joe Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Journal of Optoelectronics Engineering. 2013, 1(1), 1-4
DOI: 10.12691/joe-1-1-1
Open AccessArticle

High-Temperature Infrared Emitters Based on HgCdTe Grown by Molecular-Beam Epitaxy

K.D. Mynbaev, , N.L. Bazhenov, A.V. Shilyaev, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, V.G. Remesnik and V.S. Varavin

Pub. Date: March 19, 2013

Cite this paper:
K.D. Mynbaev, N.L. Bazhenov, A.V. Shilyaev, S.A. Dvoretsky, N.N. Mikhailov, M.V. Yakushev, V.G. Remesnik and V.S. Varavin. High-Temperature Infrared Emitters Based on HgCdTe Grown by Molecular-Beam Epitaxy. Journal of Optoelectronics Engineering. 2013; 1(1):1-4. doi: 10.12691/joe-1-1-1

Abstract

Prospects of fabrication of high-temperature (up to 300K) infrared emitters based on HgCdTe alloys is discussed on the basis of the results of the study of photoluminescence of hetero-epitaxial structures. The structures were grown by molecular-beam epitaxy and emitted light with wavelength of 1.5 to 4.3µm at room temperature. It is suggested that observation of photoluminescence of the narrow-gap semiconductor at high temperatures and the specific shape of photoluminescence spectra can be explained by taking into account HgCdTe alloy disorder as is the case, for example, in structures based on III-nitrides. Requirements for technology considerations for the optically-pumped high-temperature infrared emitters based on HgCdTe are discussed.

Keywords:
HgCdTe infrared emitters photoluminescence alloy disorder

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Tonheim, C.R., Sudbø, A.S., Selvig, E., and Haakenaasen, R., “Enhancement in light emission from Hg–Cd–Te due to surface patterning,” IEEE Photonic Techn. L., 23 (1). 36-38. Jan. 2011.
 
[2]  Tonheim, C.R., Selvig, E., Nicolas, S., Gunnæs, A.E., Breivik, M., and Haakenaasen, R., “Excitation density dependence of the photoluminescence from CdxHg1-xTe multiple quantum wells,” J. Phys.: Conf. Ser., 100 (4). 042024. Mar. 2008.
 
[3]  Zanatta, J.P., Noël, F., Ballet, P., Hdadach, N., Million, A., Destefanis, G., Mottin, E., Kopp, C., Picard, E., and Hadji, E., “HgCdTe molecular beam epitaxy material for microcavity light emitters: application to gas detection in the 2–6 µm range,” J. Electron. Mater., 32 (7). 602-607. Jul. 2003.
 
[4]  Rogalski, A., “Recent progress in infrared detector technologies,” Infr. Phys. Technol., 54 (1). 136-154. Jan. 2011.
 
[5]  Lusson, A., Fuchs, F., and Marfaing, Y., “Systematic photoluminescence study of CdxHg1−xTe alloys in a wide composition range,” J. Cryst. Growth, 101 (1-4). 673-677. Apr. 1990.
 
[6]  Herrmann, K.H., Hoerstel, W., Möllmann, K.-P., Sassenberg, U., and Tomm, J.W., “Optical and photoelectric properties of Hg0.6Cd0.4Te,” Semicond. Sci. Technol., 7 (5). 578-582. May 1992.
 
[7]  Chu, J., and Chang, Y. “Optical properties of MCT,” in Mercury Cadmium Telluride: Growth, Properties and Applications, Ed. by Capper, P., and Garland, J.W., John Wiley & Sons, London, P. 205-238, 2011.
 
[8]  Mynbaev, K.D., Bazhenov, N.L., Ivanov-Omski, V.I., Mikhailov, N.N., Yakushev, M.V., Sorochkin, A.V., Dvoretsky, S.A., Varavin, V.S., and Sidorov, Yu.G., “Photoluminescence of HgCdTe-based heterostructures grown by molecular-beam epitaxy,” Semiconductors, 45 (7). 872-879. Jul. 2011.
 
[9]  Robin, I.C., Taupin, M., Derone, R., Ballet, P., and Lusson, A., “Photoluminescence studies of HgCdTe epilayers,” J. Electron. Mater., 39 (7). 868-872. Jul. 2010.
 
[10]  Zhang, X., Shao, J., Chen, L., Lũ, X., Guo, S., He, L., and Chu, J., “Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K,” J. Appl. Phys., 110 (4). 043503. Aug. 2011.
 
[11]  Hadji, E., Picard, E., Roux, C., Molva, E., and Ferret, P., “3.3-µm microcavity light emitter for gas detection,” Optics. Lett., 25 (10). 725-727. May. 2000.
 
[12]  Laurenti, J.P., Camassel, J., Bouhemadou, A., Toulouse, B., Legros, R., and Lusson, A., “Temperature dependence of the fundamental absorption edge of mercury cadmium telluride,” J. Appl. Phys., 67 (10). 6454-6460. May 1990.
 
[13]  Ivanov-Omskii, V.I., Mynbaev, K.D., Bazhenov, N.L., Smirnov, V.A., Mikhailov, N.N., Sidorov, G.Yu., Remesnik, V.G., Varavin, V.S., and Dvoretsky, S.A., “Optical properties of molecular beam epitaxy-grown HgCdTe structures with potential wells,” Phys. Stat. Sol. (c), 7 (6). 1621-1623. Jun. 2010.
 
[14]  Ivanov-Omskii, V.I., Bazhenov, N.L., and Mynbaev, K.D., “Effect of alloy disorder on photoluminescence in HgCdTe,” Phys. Stat. Sol. (b), 246(8). 1858-1861. Aug. 2009.
 
[15]  Tomm, J.W., Herrmann, K.H., and Yunovich, A.E., “Infrared photoluminescence in narrow-gap semiconductors” (Review article), Phys. Stat. Sol. (a), 122(1). 11-42. Nov. 1990.
 
[16]  Powell, R.E.L., Novikov, S.V., Luckert, F., et al., “Carrier localization and related photoluminescence in cubic AlGaN epilayers,” J. Appl. Phys., 110 (6). 063517. Sep. 2011.
 
[17]  Stringfellow, G.B., “Microstructures produced during the epitaxial growth of InGaN alloys,” J. Cryst. Growth, 312 (6). 735-749. Mar. 2010.
 
[18]  Mercaldo, L.V., Esposito, E.M., Veneri, P.D., Rezgui, B., Sibai, A., and Bremond, G., “Photoluminescence properties of partially phase separated silicon nitride films,” J. Appl. Phys., 109 (9). 093512. May 2011.
 
[19]  Liao, Y., Kao, C., Thomidis, C., et al., “Recent progress of efficient deep UV-LEDs by plasma-assisted molecular beam epitaxy,” Phys. Stat. Sol. (c). 9 (3-4). 798-801. Mar. 2012.
 
[20]  Shevchenko, E.A., Jmerik, V.N., Mizerov, A.M., et al., “Quantum-confined stark effect and localization of charge carriers in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells with different morphologies,” Semiconductors, 46 (8). 998-1002. Aug. 2012.
 
[21]  Chen, M.-C., and, Bevan, M., “Room temperature 3-5 micrometer wavelength HgCdTe heterojunction emitter”, U.S. Patent 5, 998,809. Dec. 1999.
 
[22]  Elliott, C.T., “Advanced heterostructures for In1-xA1xSb and Hg1xCdxTe detectors and emitters”, Proceedings of SPIE, 2744. 452-462. 1996.