Journal of Optoelectronics Engineering
ISSN (Print): 2372-4773 ISSN (Online): 2372-4781 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Journal of Optoelectronics Engineering. 2014, 2(1), 1-6
DOI: 10.12691/joe-2-1-1
Open AccessArticle

Well Width Effects on Material Gain and Lasing Wavelength in InGaAsP / InP Nano-Heterostructure

Rashmi Yadav1, Pyare Lal1, F. Rahman2, S. Dalela3 and P. A. Alvi1,

1Department of Physics, Banasthali Vidyapith, Rajasthan (INDIA)

2Department of Physics, Aligarh Muslim University, Aligarh, UP (INDIA)

3Department of Pure and Applied Physics, University of Kota, Kota, Rajasthan (INDIA)

Pub. Date: January 20, 2014

Cite this paper:
Rashmi Yadav, Pyare Lal, F. Rahman, S. Dalela and P. A. Alvi. Well Width Effects on Material Gain and Lasing Wavelength in InGaAsP / InP Nano-Heterostructure. Journal of Optoelectronics Engineering. 2014; 2(1):1-6. doi: 10.12691/joe-2-1-1


This paper reports the effects of quantum well width on material gain and lasing wavelength of the InGaAsP / InP lasing nano-heterostructure which is based on simple SCH (Separate Confinement Heterostructure) design. The studies made in this paper are directed towards the well width dependent modeling of InGaAsP / InP lasing nano-heterostructure and simulation of the lasing characteristics such as material gain, differential gain, anti-guiding factor and refractive index change with carrier density. The outcomes of the work reported in this paper suggest that both the material gain and lasing wavelength can be controlled by varying width of the quantum well sandwiched between the barriers followed by claddings in the nano-structure. Since, the maximum material gain has been achieved at wavelength of 1.35 ┬Ám for minimum quantum well width (2 nm) with in TE mode; therefore, InGaAsP / InP based nano-heterostructure with 2 nm well width may be very useful in the area of nano-opto-electronics.

material gain anti-guiding factor InGaAsP differential gain carrier density

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 9


[1]  P. A. Alvi, Sapna Gupta, M. J. Siddiqui, G. Sharma, and S. Dalela, Physica B: Condensed Matter, Vol. 405, pp. 2431-2435 (2010).
[2]  P. A. Alvi, Sapna Gupta, P. Vijay, G. Sharma, M. J. Siddiqui, Physica B: Condensed Matter, Vol. 405, pp. 3624-3629 (2010).
[3]  Wang Yang, Qiu Ying-Ping, PAN Jiao-Qing, ZHAO Ling-juan, ZHU Hong-Liang, Wang Wei, Chin. Phys. Lett. 27, No. 11, 114201 (2010).
[4]  M. Bugajski, B. Mroziewicz, K. Reginski, J. Muszalski, J. Kubica, M. Zbroszczyk, P. Sajewicz, T. Piwonski, A. Jachymek, R. Rutkowski, T. Ochalski, A. Wojcik, E. Kowalczyk, A. Malag, A. Kozlowska, L. Dobrzanski, and A. Jagoda, Opto-Electronics Review 9 (1) (2001).
[5]  Durga Prasad Sapkota, Madhu Sudan Kayastha, Kiochi Wakita, Opt. Quant Electron., 45 35-43 (2013).
[6]  Carsten Rohr, Paul Abbott, Ian Ballard, James P. Connolly, and Keith W. J. Barnham, Massimo Mazzer, Chris Button, Lucia Nasi, Geoff Hill and John S. Roberts, Graham Clarke, Ravin Ginige, J. of Appl. Phys., 100, 114510 (2006).
[7]  L.P. Hou, M. Haji, C. Li, B.C. Qiu, and A.C. Bryce, Laser Phys. Lett. 8, 535 (2011).
[8]  Vahid Bahrami Yekta and Hassan Kaatuzian, Commun. Theor. Phys. 54, pp. 529-535 (2010).
[9]  Jong-Jae KIM, J. of the Korean Physical Society, 48, No. 1, pp. 166-169 (2006).
[10]  Pyare Lal, Shobhna Dixit, S. Dalela, F. Rahman, P. A. Alvi, Physica E 46, pp. 224-231(2012).
[11]  Beatrice Saint-Cricq, Francoise Lozes-Dupuy, and Georges Vassilieff, IEEE J. of Quantum Electronics QE-22, No. 5 (1986).
[12]  Sandra R. Selmic, Tso-Min Chou, Jiehping Sih, Jay B. Kirk, Art Mantie, Jerome K. Butler, Gary A. Evans, IEEE J. On Selected Topics in Quantum Electronics, 7, No. 2 (2001).
[13]  G. D. Mahan, L. E. Oliveira, Phys. Rev. B 44, 3150-3156 (1991).
[14]  P. A. Alvi, Pyare Lal, S. Dalela, and M. J. Siddiqui, Physica Scripta 85, 035402 (2012).
[15]  Pyare Lal, Rashmi Yadav, F. Rahman, P. A. Alvi, Adv. Sci. Eng. Med. 5, 918-925 (2013).
[16]  N. Choudhary, N. K. Dutta, J. Appl. Phys., Vol. 90, No. 1, pp. 38-42 (2001).
[17]  P. L. Derry, A. Yariv, K.Y. Lau, N. Bar-Chaim, K. Lee, J. Rosenberg, Appl. Phys. Lett. 50, 1773 (1987).
[18]  A. Yariv, Appl. Phys. Lett. 53, 1033 (1988).