Journal of Optoelectronics Engineering
ISSN (Print): 2372-4773 ISSN (Online): 2372-4781 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
Journal of Optoelectronics Engineering. 2013, 1(1), 28-32
DOI: 10.12691/joe-1-1-5
Open AccessArticle

Nickel Sub-lattice Effects on the Optical Properties of ZnO Nanocrystals

Sajid Husain1, F. Rahman1, Nasir Ali2 and P. A. Alvi3,

1Department of Physics, Aligarh Muslim University, Aligarh, India

2School of Physical Science, Jawaharlal Nehru University, New Delhi, India

3Department of Physics, Banasthali University, Banasthali Vidyapith, Rajasthan, India

Pub. Date: December 22, 2013

Cite this paper:
Sajid Husain, F. Rahman, Nasir Ali and P. A. Alvi. Nickel Sub-lattice Effects on the Optical Properties of ZnO Nanocrystals. Journal of Optoelectronics Engineering. 2013; 1(1):28-32. doi: 10.12691/joe-1-1-5


Nano-crystalline undoped and Ni doped ZnO (Ni-ZnO) nano-particles with compositional formula NixZn1-xO (x=0, 1, 3 and 5 mol %) were synthesized using sol-gel method. As nickel incorporated in to the ZnO matrix results were analyzed using different techniques such as XRD, SEM, EDS, UV-VIS and FT-IR techniques. X-ray diffraction (XRD) result reveals the formation of hexagonal wurtzite structure of all samples, while extra peak appears at 42.5o due to Ni sub-lattice in doped samples informs about the presence of doped species. In addition, the surface morphology of undoped ZnO has also been studied and discussed using scanning electron microscopy (SEM). Moreover, the energy bandgap of undoped and doped ZnO has also been measured using UV-VIS spectrometer. It is observed that the doping of sub-lattice affects the structure as well as the energy bandgap. Hence, by Ni- doping in ZnO nano-particles, the energy bandgap of Ni-ZnO can be tuned for various optical applications. The lattice parameters and crystallite sizes have also been determined using XRD and it has been observed that they changes with the increase of Ni amount. The crystal vibrational study has also been performed using FT-IR spectroscopy which gives the presence of the host as well as doped sub-lattice.

Ni-ZnO nano-particles sol-gel XRD SEM EDS FT-IR UV-VIS

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 7


[1]  Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakaushi Y and Hatanaka Y, 2000, Luminescent properties of ZnO thin films grown epitaxially on Si substrate, J. Cryst. Growth pp. 214-215, 294.
[2]  Song D, Aberle A G and Xia J, 2002, Optimization of ZnO: Al films by change of sputter gas pressure for solar cell application, Appl. Surf. Sci. 195, 291.
[3]  Martinez M A, Herrero J and Gutiȇrrez M T, 1997, Deposition of Transparent and conducting Al-doped ZnO thin films for photovoltaic solar cells, Sol. Energy Mater. Sol. Cells 45, 75.
[4]  Cheng X L, Zhao H, Huo L H, Gao S and Zhao J G, 2004, ZnO nano-particulate the films: preparation characterization and gas-sensing property, Sensors Actuators B 102, 248.
[5]  Ko S C, Kim Y C, Lee S S, Choi S H and Kim S R, 2003, micro-machined Piezoelectric Membrane acoustic device, Sensors Actuators A 103,130.
[6]  Kang H S, Kang J S, Kim J Wand Lee S Y, 2004, Annealing effect on the property of ultraviolet and green emission of ZnO thin films, J. Appl. Phys 95, 1246.
[7]  Major S and Chopra K L, 1988, indium doped zinc oxide films as transparent electrodes for solar cells, Sol. Energy Mater. 17, 319.
[8]  S. J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, 2003, Recent progress in processing and properties of ZnO, Superlattices and Microstructures, 34, 3-32.
[9]  J. Zhou, N.S. Xu, Z.L. Wang, 2006, Dissolving behavior and stability of ZnO Wires in bio fluids: a study on biodegradability and biocompatibility of ZnO nanostructures, Adv. Mater. 18, 2432-2435.
[10]  K. Sato, H. Katayama-Yoshida, 2000, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors, J. Appl. Phys. 39, 555-558.
[11]  A. Korbecka, J.A. Majewski, 2009,on the origin of room-temperature ferromagnetism in wide-gap semiconductors, Low Temp. Phys. 35, 53-57.
[12]  D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, G.P. Das, 2007, Ferromagnetism in Fe-doped ZnO nanocrystals: experiment and theory, Phys. Rev. B 75, 144404.
[13]  C.W. Cheng, G.Y. Xu, H.Q. Zhang, Y. Luo, 2008, Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism, Material Letters, 62, 1617-1620.
[14]  D.W.Wu, M. Yang, Z.B. Huang, G.F. Yin, X.M. Liao, Y.Q. Kang, X.F. Chen, H. Wang, 2009, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution, J. Colloid Interface Sci. 330, 380-385.
[15]  M. Sima, I. Enculescu, M. Sima, M. Enache, E. Vasile and J. P. Ansermet, 2007, ZnO:Mn:Cu nanowires prepared by template method, Phys. Status Solidi B 244, 1522.
[16]  A. B. Djurišic`, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui and C. Surya, 2004, Phootoluminescence and EPR of ZnO tetrapod structures, Adv. Funct. Mater. 14, 856.
[17]  L.P. Bauermann, A. Campo, J. Bill, F. Aldinger, 2006, Heterogeneous nucleation of ZnO using gelatin as the organic matrix, Chem. Mater. 18, 2016-2020.
[18]  M. Umetsu, M. Mizuta, K. Tsumoto, Satoshi Ohara, S. Takami, H. Watanabe, I. Kumagai, T. Adschiri, 2005, Bio assisted room-temperature immobilization and mineralization of zinc oxide—the structural ordering of ZnO nano-particles into a flower-type morphology, Adv. Mater. 17, 2571-2575.
[19]  M.S. El-shall, W. Slack, W. Vann, D. Kane, D. Hanley, 1994, Synthesis of nanoscale metal oxide particles using laser vaporization/condensation in a diffusion cloud chamber, J. Phys. Chem. 98 (12), 3067-3070.
[20]  X.F. Duan, C.M. Lieber, 2000, General synthesis of semiconductor nanowires, Adv. Mater. 12 (4), 295-302.
[21]  J.T. Hu, T.W. Odom, C.M. Lieber, 1999, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32 (5), 435-445.
[22]  Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, H.Q. Yan, 2003, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15 (5), 353-359.
[23]  S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, 1999, Selforiented regular arrays of carbon nanotubes and their field emission properties, Science 2839 (2), 512-514.
[24]  M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, 2001, Room-temperature ultraviolet nanowire and nanolasers, Science 2929 (29), 1897-1899.
[25]  M. Li, H. Schnablegger, S. Mann, 1999, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature 402 (5), 393-395.
[26]  M. Mo, J.C. Yu, L. Zhang, S.A. Li, 2005, Self-assembly of ZnO nanorods and nanosheets into hollow micro hemispheres and microspheres, Adv. Mater. 17 (6), 756-760.
[27]  Sajid Husain, F. Rahman, Wasi Khan, and A. H. Naqvi, Effects of Mn substitution on Structural And Optical Properties of ZnO Nanoparticles, 2013, AIP Conf. Proc. 1536, 33.
[28]  P.K. Sharma, R.K. Dutta, A.C. Pandey, 2009, Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles, J. Magn. &Magn. , Mater. 321, 3457.
[29]  G.J. Huang, J.B. Wang, X.L. Zhong, G.C. Zhou, H.L. Yan, 2007, Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nano-particles, J. Mater. Sci. 42, 6464.
[30]  A.L Efros and M.Rosen, 1998, Quantum size level structure of narrow-gap semiconductor nanocrystals: Effect of band coupling, Physical Rev. B, 58, 7120.
[31]  G. Beni and T. M. Rice, 1978, Theory of electron-hole liquid in semiconductor, Phys. Rev. B 18, 768.