[1] | Hussain, N, Al-Mezel, S, Salimi, P: Fixed points for ψ - Graphic Contractions with Application to Integral Equations. Abstract and Applied Analysis Volume 2013, Article ID 575869, 11 pages. |
|
[2] | Ahmad, AGB, Fadail, ZM, Rajić, VĆ, Radenović, S: Nonlinear Contractions in 0-complete partial metric spaces. Abstract and Applied Analysis Volume 2012, Article ID 451239, 12 pages. |
|
[3] | Nashine et al.: Fixed point theorems under Hardy-Rogers contractive conditions on 0-complete ordered partial metric spaces. Fixed Point Theory and Appl. 2012 (2012), 180. |
|
[4] | Romaguera, S.: A Kirk Type characterization of completeness for partial metric spaces. Fixed Point Theory and Appl. Volume 2010, Article ID 493298, 6 pages. |
|
[5] | Shukla, S, Radenović, S.: Some common Fixed Point Theorems for F-Contraction Type Mappings in 0-complete partial metric spaces. Journal of Mathematics Volume 2013, Article ID 878730, 7 pages. |
|
[6] | Shukla, S, Radenović, S, Vetro, C.: Set-Valued Hardy-Rogers Type Contraction in 0-complete partial metric spaces. International Journal of Mathematics and Mathematical Sciences, Volume 2014, Article ID 652925, 9 pages. |
|
[7] | Shukla, S.: Set-Valued PREŠIĆ-ĆIRIĆ Type contraction in 0-complete partial metric spaces. Matematiqki Vesnik, 66, 2 (2014), 178-189, June 2014. |
|
[8] | Paesano, D, Vetro, C.: Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. September 2014, Volume 108, Issue 2, pp 1005-1020. |
|
[9] | Matthews, SG.: "Partial metric topology", Proc. 8 th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994) 183-197. |
|
[10] | Heckmann, R.: Approximation of metric spaces by partial metric spaces., Applied Categorical Structures, vol. 7, no:1-2, p.p. 71-83, 1999. |
|
[11] | Romaguera, S, Schellekens, M.: Partial metric monoids and semivaluation spaces, Topology and Its Applications, vol. 153, no:5-6, p.p 948-962, 2005. |
|
[12] | Romaguera, S, Valero, O.: A quantitative conputational model for complete partial metric spaces via formal balls, Mathematical Structures in Computer science, vol. 19, no. 3, pp. 541-563, 2009. |
|
[13] | Schellekens, M.: The Smyth completion: a common foundation for denotational semantics and complexity analysis, Electronic Notes in Theoretical Computer Science, Vol. 1, pp. 535-556, 1995. |
|
[14] | Schellekens, M.: A charecterization of partial metrizability: domain are quantifiable, Theoretical Computer Science, vol. 305, no. 1-3, pp. 409-432, 2003. |
|
[15] | Abdeljawad, T, Karapınar, E, Taş, K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24, 1900-1904 (2011). |
|
[16] | Karapınar, E, Erhani IM.: Fixed point theorems for operators on partial metric spaces. Appl.Math. Lett. 24, 1894-1899 (2011). |
|
[17] | Abbas, M., Jungck, J.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl, 341, 416-420 (2008). |
|
[18] | Radenovi_c, S.: Remarks on some coupled fixed point results in Partial metric spaces. Nonlinear Functional Analysis and Applications, vol. 18. No. 1 (2013), pp.39-50. |
|
[19] | Boyd, DW, Wong, JSW.: On nonlinear contractions. Proceedings of the American Mathematical Society 20 (1969) 458-464. |
|
[20] | Rhoades, BE.: comparasion of various de_nitions of contractive mappings, Transactions of the American Mathematical Society, 226 (1977) 257-290. |
|