Journal of Mathematical Sciences and Applications
ISSN (Print): 2333-8784 ISSN (Online): 2333-8792 Website: http://www.sciepub.com/journal/jmsa Editor-in-chief: Prof. (Dr.) Vishwa Nath Maurya, Cenap ozel
Open Access
Journal Browser
Go
Journal of Mathematical Sciences and Applications. 2016, 4(1), 14-19
DOI: 10.12691/jmsa-4-1-3
Open AccessArticle

Generalized (ψ,φ)-weak Contractions In 0-complete Partial Metric Spaces

Mehmet Ali Akturk1, and Esra Yolacan2

1Istanbul University, Faculty of Engineering, Department of Engineering Sciences, Avcilar Campus-34320, Istanbul, Turkey

2Republic of Turkey Ministry of National Education, Mathematics Teacher, 60000 Tokat, Turkey

Pub. Date: April 09, 2016

Cite this paper:
Mehmet Ali Akturk and Esra Yolacan. Generalized (ψ,φ)-weak Contractions In 0-complete Partial Metric Spaces. Journal of Mathematical Sciences and Applications. 2016; 4(1):14-19. doi: 10.12691/jmsa-4-1-3

Abstract

In this paper, we prove some common fixed point theorems in 0-complete partial metric spaces. Our results extend and generalize many existing results in the literature. Some examples are included which show that the generalization is proper.

Keywords:
partial metric space weak contraction fixed point

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Hussain, N, Al-Mezel, S, Salimi, P: Fixed points for ψ - Graphic Contractions with Application to Integral Equations. Abstract and Applied Analysis Volume 2013, Article ID 575869, 11 pages.
 
[2]  Ahmad, AGB, Fadail, ZM, Rajić, VĆ, Radenović, S: Nonlinear Contractions in 0-complete partial metric spaces. Abstract and Applied Analysis Volume 2012, Article ID 451239, 12 pages.
 
[3]  Nashine et al.: Fixed point theorems under Hardy-Rogers contractive conditions on 0-complete ordered partial metric spaces. Fixed Point Theory and Appl. 2012 (2012), 180.
 
[4]  Romaguera, S.: A Kirk Type characterization of completeness for partial metric spaces. Fixed Point Theory and Appl. Volume 2010, Article ID 493298, 6 pages.
 
[5]  Shukla, S, Radenović, S.: Some common Fixed Point Theorems for F-Contraction Type Mappings in 0-complete partial metric spaces. Journal of Mathematics Volume 2013, Article ID 878730, 7 pages.
 
[6]  Shukla, S, Radenović, S, Vetro, C.: Set-Valued Hardy-Rogers Type Contraction in 0-complete partial metric spaces. International Journal of Mathematics and Mathematical Sciences, Volume 2014, Article ID 652925, 9 pages.
 
[7]  Shukla, S.: Set-Valued PREŠIĆ-ĆIRIĆ Type contraction in 0-complete partial metric spaces. Matematiqki Vesnik, 66, 2 (2014), 178-189, June 2014.
 
[8]  Paesano, D, Vetro, C.: Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. September 2014, Volume 108, Issue 2, pp 1005-1020.
 
[9]  Matthews, SG.: "Partial metric topology", Proc. 8 th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994) 183-197.
 
[10]  Heckmann, R.: Approximation of metric spaces by partial metric spaces., Applied Categorical Structures, vol. 7, no:1-2, p.p. 71-83, 1999.
 
[11]  Romaguera, S, Schellekens, M.: Partial metric monoids and semivaluation spaces, Topology and Its Applications, vol. 153, no:5-6, p.p 948-962, 2005.
 
[12]  Romaguera, S, Valero, O.: A quantitative conputational model for complete partial metric spaces via formal balls, Mathematical Structures in Computer science, vol. 19, no. 3, pp. 541-563, 2009.
 
[13]  Schellekens, M.: The Smyth completion: a common foundation for denotational semantics and complexity analysis, Electronic Notes in Theoretical Computer Science, Vol. 1, pp. 535-556, 1995.
 
[14]  Schellekens, M.: A charecterization of partial metrizability: domain are quantifiable, Theoretical Computer Science, vol. 305, no. 1-3, pp. 409-432, 2003.
 
[15]  Abdeljawad, T, Karapınar, E, Taş, K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24, 1900-1904 (2011).
 
[16]  Karapınar, E, Erhani IM.: Fixed point theorems for operators on partial metric spaces. Appl.Math. Lett. 24, 1894-1899 (2011).
 
[17]  Abbas, M., Jungck, J.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl, 341, 416-420 (2008).
 
[18]  Radenovi_c, S.: Remarks on some coupled fixed point results in Partial metric spaces. Nonlinear Functional Analysis and Applications, vol. 18. No. 1 (2013), pp.39-50.
 
[19]  Boyd, DW, Wong, JSW.: On nonlinear contractions. Proceedings of the American Mathematical Society 20 (1969) 458-464.
 
[20]  Rhoades, BE.: comparasion of various de_nitions of contractive mappings, Transactions of the American Mathematical Society, 226 (1977) 257-290.