[1] | R. M. Goel and B. S. Mehrok, A subclass of univalent functions, J. Austral. Math. Soc.(Series A), 35 (1983), 1-17. |
|
[2] | Aini Janteng, Suzeini Abdul Halim and Maslina Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Ineq. Pure Appl. Math., 7 (2) (2006), 1-5, Art. 50. |
|
[3] | Aini Janteng, Suzeini Abdul Halim and Maslina Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1 (13) (2007), 619-625. |
|
[4] | Aini Janteng, Suzeini Abdul Halim and Maslina Darus, Hankel determinant for functions starlike and convex with respect to symmetric points, J. Quality Measurement and Anal., 2 (1) (2006), 37-43. |
|
[5] | R. J. Libera and E-J. Zlotkiewiez, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225-230. |
|
[6] | R. J. Libera and E-J. Zlotkiewiez, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251-257. |
|
[7] | T. H. Mac Gregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537. |
|
[8] | B. S. Mehrok and Gagandeep Singh, Estimate of second Hankel determinant for certain classes of analytic functions, Scientia Magna, 8 (3) (2012), 85-94. |
|
[9] | G. Murugusundramurthi and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. and Appl., 1 (3) (2009), 85-89. |
|
[10] | J. W. Noonan and D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976), 337-346. |
|
[11] | Ch. Pommerenke, Univalent functions, Göttingen: Vandenhoeck and Ruprecht, 1975. |
|
[12] | Gagandeep Singh, Hankel determinant for new subclasses of analytic functions with respect to symmetric points, Int. J. of Modern Math. Sci., 5 (2) (2013), 67-76. |
|
[13] | Gagandeep Singh, Hankel determinant for a new subclass of analytic functions, Scientia Magna, 8 (4) (2012), 61-65. |
|