[1] | S. Lie, Math. Ann. 8, 214-303, (1874/75). |
|
[2] | A. M. Vinogradov, I.S. Krasil’shchik. What is Hamiltonian formalism?, (Russian), Uspehi Mat. Nauk, vol.30, no.1, 1975. 173-198. |
|
[3] | J. Braconnier. Algèbres de Poisson, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 21, A1345-A1348. |
|
[4] | A. Lichnerowicz. Les variétés de Poisson et leurs algèbres de Lie associées, (French), J. Di_. Geom, vol.12, (1977); 253-300. |
|
[5] | I. Krasil’shchik. Hamiltonian cohomology of canonical algebras, Dokl. Akad. Nauk SSSR 251 (1980), no.6, 1306-1309. |
|
[6] | A. Weinstein, Poisson geometry, Differential Geometry and its Applications 9 (1998) 213-238. |
|
[7] | J. Block and E. Getzler. Quantization of foliations, Proceedings of XXth International Conference on Differential Geometry Methods in Theoretical Physics, New York, 1991; Vol. 1, 2 (World Scientific, River Edge, NJ, 1992) 471-487. |
|
[8] | D.R. Farkas and G. Letzter. Ring theory from symplectic geometry, J. Pure Appl. Alg. 125 (1998) 155-190. |
|
[9] | F.F. Voronov, On the Poisson envelope of a Lie algebra. ”Noncommutative” moment space, Funct. Anal. Appl. 29 (1995) 196-199. |
|
[10] | P. Xu. Noncommutative Poisson algebras, Amer. J. Math. 116 (1994) 101-125. |
|
[11] | A. Alekseev and Y. Kosmann-Schwarzbach, Manin pairs and moment maps, J. Differential Geometry, 56 (2000) 133-165. |
|
[12] | R. Aminou, Y. Kosmann-Schwarzbach, and E. Meinrenken, Quasi-Poisson manifolds, Canad. J. Math., 54(1):3-29, 2002. |
|
[13] | J. Huebschmann. Poisson structures on certain moduli spaces for bundles on a surface. Ann. Inst. Fourier (Grenoble), 45(1): 65-91, 1995. |
|
[14] | W. Goldman. Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math., 85(2): 263-302, 1986. |
|
[15] | W. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. in Math., 54(2): 200-225, 1984. |
|
[16] | L. Je_rey and J.Weitsman. Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula. Comm. Math. Phys., 150(3):593-630, 1992. |
|
[17] | I. Vaisman, On the geometric quantization of Poisson manifolds, J. Math. Phys 32(1991), 3339-3345. |
|
[18] | A. Pichereau, Poisson (co)homology and isolated singularities, J. Algebra 299, 2 (2006), 747-777. |
|
[19] | P. Monnier, Poisson cohomology in dimension two, Israel J. Math.,129 (2002), 189-207. |
|
[20] | C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson structures, Grundlerhen der Mathematischen Wissenschaften, 347, Springer, 2013. |
|
[21] | I. Vaismann. Lectures on the Geometry of Poisson manifolds, Birkhauser, Basel, 1994. |
|
[22] | P. Vanhaecke. Integrable systems in the real of algebraic geometry, Vol. 1638 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Second edition, 2001. |
|
[23] | W. Oevel and O. Ragnisco, R-matrices and higher Poisson brackets for integrable systems. Phy. A. 161 (1): 181-220, 1989. |
|
[24] | S. Parmentier. On coproducts of quasi-triangular Hopf algebras, Algebra i Analiz, 6 (4): 204-222, 1994. |
|
[25] | L. C. Li and S. Parmentier. Nonlinear Poisson structures and r-matrices. Comm. Math. Phys., 125 (4): 545-563, 1989. |
|
[26] | W. S. Massey. Algebraic topology: an introduction, Springer-Verlag, New York; 1977. Reprint of the 1967 edition, Graduate Texts in Mathematics, Vol. 56. |
|
[27] | M. Pedroni and P. Vanhaecke. A Lie algebraic generalization of the Mumford system, its symmetries and is multi-Hamiltonian structure. Regul. Chaotic Dyn., 3 (3): 132-160, 1998. J. Moser at 70 (Russian). |
|