Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2018, 6(2), 43-46
DOI: 10.12691/jmpc-6-2-3
Open AccessArticle

Effect of Annealing Rates on Surface Roughness of TiO2 Thin films

Benjamin M. John1, 2, , Simon W. Mugo1 and James M. Ngaruiya1

1Department of Physics, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi Kenya

2Department of Physics and Electronics, South Eastern Kenya University (SEKU), Kitui Kenya

Pub. Date: December 18, 2018

Cite this paper:
Benjamin M. John, Simon W. Mugo and James M. Ngaruiya. Effect of Annealing Rates on Surface Roughness of TiO2 Thin films. Journal of Materials Physics and Chemistry. 2018; 6(2):43-46. doi: 10.12691/jmpc-6-2-3


In this work, we report a simple and novel method of determining the morphological properties of TiO2 thin films synthesized by sol-gel doctor-blade method. The TiO2 films were deposited on doped fluorine tin oxide (SnO2:F) layer on glass substrates. The as-deposited and subsequent annealed films at different rates (1-step annealing, 1¡ãC/min and 2¡ãC/min) were studied using optical microscopy. Analysis of the optical images through line scans and histogram distributions, revealed the average surface roughness to be 0.1246¡À0.0114, 0.1442¡À0.0069, 0.1393¡À0.0084, and 0.1333¡À0.0084¦Ìm for the as-deposited, 1-step annealed, 2¡ãC/min, and 1¡ãC/min films, respectively. The average sizes of islands forming on the films were found to be 0.1037¡À 0.0054, 0.1262¡À0.0053, 0.1684¡À0.0103, and 0.1947¡À0.0078¦Ìm for the as-deposited, 1-step annealed, 2¡ãC/min, and 1¡ãC/min films, respectively. A striking statistical correlation between surface roughness and annealing rate was established, with the 1¡ãC/min annealed film having the lowest roughness and the largest size of islands. This is attributed to the dynamics of crystallization where TiO2 have more time to partially melt and coalesce into relatively smooth surface at low annealing rate, in contrast to high rates. Our results clearly demonstrate that the surface roughness on TiO2 films heat-treated at different temperatures can be accurately and rapidly determined based on their optical contrast.

TiO2 optical image surface roughness morphology

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Euvananont, C., Junin, C., Inpor, K., Limthongkul, P., & Thanachayanont, C. (2008). TiO2 optical coating layers for self-cleaning applications. Ceramics International, 34(4), 1067-1071.
[2]  Kawasaki, H., Ohshima, T., Yagyu, Y., Suda, Y., Khartsev, S. I., & Grishin, A. M. (2008). TiO2/TiN/TiO2 heat mirrors by laser ablation of single TiN target. In Journal of Physics: Conference Series (Vol. 100, No. 1, p. 012038). IOP Publishing.
[3]  Ray, S., Dutta, U., Das, R., & Chatterjee, P. (2007). Modelling of experimentally measured optical characteristics of ITO/TiO2 transparent multi-layer heat shields. Journal of Physics D: Applied Physics, 40(8), 2445.
[4]  Tavares, C. J., Vieira, J., Rebouta, L., Hungerford, G., Coutinho, P., Teixeira, V., ... & Fernandes, A. J. (2007). Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates. Materials Science and Engineering: B, 138(2), 139-143.
[5]  Pulker, H. K. (1999). Optical coatings deposited by ion and plasma PVD processes. Surface and Coatings Technology, 112(1-3), 250-256.
[6]  Yang, W., & Wolden, C. A. (2006). Plasma-enhanced chemical vapor deposition of TiO2 thin films for dielectric applications. Thin Solid Films, 515(4), 1708-1713.
[7]  Sung, Y. M., & Kim, H. J. (2007). Sputter deposition and surface treatment of TiO2 films for dye-sensitized solar cells using reactive RF plasma. Thin Solid Films, 515(12), 4996-4999.
[8]  Wang, Z., Chen, Q., & Cai, X. (2005). Metal-based transparent heat mirror for ultraviolet curing applications. Applied surface science, 239(3-4), 262-267.
[9]  Ye, Q., Liu, P. Y., Tang, Z. F., & Zhai, L. (2007). Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering. Vacuum, 81(5), 627-631.
[10]  Jin, P., Miao, L., Tanemura, S., Xu, G., Tazawa, M., & Yoshimura, K. (2003). Formation and characterization of TiO2 thin films with application to a multifunctional heat mirror. Applied Surface Science, 212, 775-781.
[11]  Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., Masjuki, H. H., & Hamdi, M. (2010). Influence of substrate and annealing temperatures on optical properties of RF-sputtered TiO2 thin films. Optical Materials, 32(6), 690-695.
[12]  Wang, W. H., & Chao, S. (1998). Annealing effect on ion-beam-sputtered titanium dioxide film. Optics letters, 23(18), 1417-1419.
[13]  Shukla, G., Mishra, P. K., & Khare, A. (2010). Effect of annealing and O2 pressure on structural and optical properties of pulsed laser deposited TiO2 thin films. Journal of Alloys and Compounds, 489(1), 246-251.
[14]  Ogawa, H., Higuchi, T., Nakamura, A., Tokita, S., Miyazaki, D., Hattori, T., & Tsukamoto, T. (2008). Growth of TiO2 thin film by reactive RF magnetron sputtering using oxygen radical. Journal of Alloys and Compounds, 449(1-2), 375-378.
[15]  Naceur, J. B., Gaidi, M., Bousbih, F., Mechiakh, R., & Chtourou, R. (2012). Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol¨Cgel technique. Current Applied Physics, 12(2), 422-428.
[16]  Wibowo, K. M., Sahdan, M. Z., Asmah, M. T., Saim, H., Adriyanto, F., & Hadi, S. (2017, August). Influence of Annealing Temperature on Surface Morphological and Electrical Properties of Aluminum Thin Film on Glass Substrate by Vacuum Thermal Evaporator. In IOP Conference Series: Materials Science and Engineering (Vol. 226, No. 1, p. 012180). IOP Publishing.
[17]  Norhafiezah, S., Ayub, R. M., Arshad, M. M., Azman, A. H., Fatin, M. F., Farehanim, M. A., & Hashim, U. (2014, August). The RF power effect on the surface morphology of titanium dioxide (TiO 2) film. In Semiconductor Electronics (ICSE), 2014 IEEE International Conference on (pp. 48-51). IEEE.
[18]  Muaz, A. K. M., Hashim, U., Arshad, M. M., Ruslinda, A. R., Ayub, R. M., Gopinath, S. C., ... & Foo, K. L. (2016, July). Effect of annealing temperature on structural, morphological and electrical properties of nanoparticles TiO2 thin films by sol-gel method. In AIP Conference Proceedings (Vol. 1733, No. 1, p. 020087). AIP Publishing.
[19]  Mathews, N. R., Morales, E. R., Cort¨¦s-Jacome, M. A., & Antonio, J. T. (2009). TiO2 thin films¨CInfluence of annealing temperature on structural, optical and photocatalytic properties. Solar Energy, 83(9), 1499-1508.
[20]  Tian, G., Dong, L., Wei, C., Huang, J., He, H., & Shao, J. (2006). Investigation on microstructure and optical properties of titanium dioxide coatings annealed at various temperature. Optical Materials, 28(8-9), 1058-1063.
[21]  Ito, S., Kitamura, T., Wada, Y., & Yanagida, S. (2003). Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating. Solar energy materials and solar cells, 76(1), 3-13.