Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2018, 6(1), 23-28
DOI: 10.12691/jmpc-6-1-4
Open AccessArticle

Cycloreversion of 4H-1,3-Thiazines and Selenazines Analogous: Theoretical Study by The Density Functional Theory (DFT) Method

Affoué Lucie Bédé1, , Soleymane Koné1, Mawa Koné1, Amon Benjamine Assoma1, Kicho Denis Yapo1, Boka Robert N’Guessan1, El Hadji Sawaliho Bamba1 and Thomas Yao N’Guessan1

1Laboratoire de Chimie Organique Structurale, Université Félix Houphouët-Boigny 22 BP 582 Abidjan 22 (Côte-d’Ivoire)

Pub. Date: June 11, 2018

Cite this paper:
Affoué Lucie Bédé, Soleymane Koné, Mawa Koné, Amon Benjamine Assoma, Kicho Denis Yapo, Boka Robert N’Guessan, El Hadji Sawaliho Bamba and Thomas Yao N’Guessan. Cycloreversion of 4H-1,3-Thiazines and Selenazines Analogous: Theoretical Study by The Density Functional Theory (DFT) Method. Journal of Materials Physics and Chemistry. 2018; 6(1):23-28. doi: 10.12691/jmpc-6-1-4

Abstract

Experimental work has shown the possibility of cycloreversion of these heterocycles. In the case of 4H-1,3-thiazines, the possibilities of cycloreversion depend essentially on the nature of the substituent at the 4-position of the thiazine ring. Indeed, this reaction seems to be impossible with the methyl group in the 4-position but it is facilitated when the ethyl carboxylate group is at the same position. This difficulty does not occur with the selenium analogues. The density functional theory method at the level B3LYP/6-31G (d, p) was used to determine the influence of the heteroatom at position 1 on the cycloreversion reaction of these heterocycles. The thermodynamic and geometric parameters and the prediction of the reaction mechanism were developed in this work. The obtained results indicate a greater stability of the methylated thiazines in position 4. This would explain a difficulty of cycloreversion from these. These results also show a correlation between the reactivity of these heterocycles and their dipole moment.

Keywords:
cycloreversion activation energy (Ea) Intrinsic Reaction Coordinate (IRC) 4H-1 3-thiazines 4H-1 3-selenium

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Chia-Yi, K. and Shiuh-Jen, J., “Determination of selenium and tellurium compounds in biological samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry”, Journal of Chromatography A., 1181 (1-2), 60-66, February 2008.
 
[2]  Li, F., Ding, Y. and Shufan,Y., “Synthesis and calming activity of 6H-2-amino-4-aryl-6-(4-β-D-allopyranosyloxyphenyl)-1,3-thiazine”, Chem Nat Compd., 46 (2), 169-172, May 2010.
 
[3]  Mohammad, A., “Chemical and Pharmacological Potential of Various Substituted Thiazine Derivatives”, J. Pharm. Appl. Chem., 1 (2), 49-64, July 2015.
 
[4]  Trofimova, T.P., Zefirova, O.N., Mandrugin, A.A., Fedoseev, V.M., Peregud, Onufriev, M.V., Gulyaeva, N.V. and Proskuryako, S.Ya., “Synthesis and study of NOS-inhibiting activity of 2-N-acylamino-5,6-dihydro- 4H-1,3-thiazine”, Moscow Uni Chem B+., 63 (5), 274-277, October 2008.
 
[5]  Nagaraj, A. and Reddy, C.S., “Synthesis and biological study of novel bis-chalcones, bis-thiazines and bis-pyrimidines”, J. Iran. Chem. Soc., 5 (2), 262-267, June 2008.
 
[6]  Damanjit, S. and Singh, C., “Synthesis and biological evaluation of 1,3-thiazines- a review”, Pharmacophore, 4 (3), 70-88, June 2013.
 
[7]  Temple, Jr.C., Wheeler, G.P., Comber, R.N., Elliott, R.D. and Montgomery, J.A., “Synthesis of potential anticancer agents. Pyrido[4,3-b][1,4]oxazines and pyrido[4,3-b][1,4]thiazines”. J. Med. Chem., 26 (11), 1614-1619, November 1983.
 
[8]  El-Subbagh, H.I., Abadi, A.H., Al-Khawad, A.I.E. and Al-Rashood, K. A., “Synthesis and Antitumor Activity of Some New Substituted Quinolin-4-one and 1,7-Naphthyridin-4-one Analogs” Arch. Pharm. Pharm. Med. Chem., 332, 19-24, February 1999.
 
[9]  Malinka, W., Kaczmarz, M., Filipek, B., Sapa, J., and Glod, B., “Preparation of novel derivatives of pyridothiazine-1,1-dioxide and their CNS and antioxidant properties”, Il Farmaco, 57 (9), 737-746, September 2002.
 
[10]  Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C.D. and Ishihara, H., “Synthesis of 1,3-thiazine derivatives and their evaluation as potential antimycobacterial agents”. Eur J Pharm Sci., 15 (3), 307-310, April 2002.
 
[11]  Gokou, C.T., Pradère, J.P. and Quiniou, H., “Diels-Alder and retro-Diels-Alder reactions: from N'-(thioacyl) formamidines to thio amide vinylogues”. J. Org. Chem., 50 (9), 1545-1547, May 1985.
 
[12]  Pradere, J.P., Roze, J.C., Quiniou, H., Danion-Bougot, R., Danion, D. and Toupet, L., “Des 6 H-thiazines-1, 3 aux céphèmes par cyclocondensation”. Revue canadienne de chimie, 64 (3), 597-602, 1986.
 
[13]  Marchand, A.H., Collet, S., Guingant, A., Pradère, J.P. and Toupet, L., “Highly diastereoselective cycloaddition reactions of variously substituted 1-thia- and 1-thia-3-aza-buta-1,3-dienes. Synthesis of enantiomerically pure 5,6-dihydro-4H-[1,3]thiazines and 3,4-dihydro-2H-thiopyrans”, Tetrahedron, 60 (8), 1827-1839, February 2004.
 
[14]  Gokou, C.T., Chehna, M., Pradère, J.P., Duguay, G. and Toupet, L., “Thia-1 aza-3 butadiènes substitués: action du cétène et dérives”, Phosphorus and Sulfur and the Related Elements, 27 (3), 327-339, September 1985.
 
[15]  Quiniou, H. and Guilloton, O., “1,3-Thiazines”, Advances in Heterocyclic Chemistry, 50, 85-156, 1990.
 
[16]  Dubreuil, D., Pradère, J.P., Giraudeau, N., Goli, M. and Tonnard, F., “Easy access to substituted selenazine and selenopyran derivatives by a cycloaddition-cyclorersion process”. Tetrahedron Letters, 36 (2), 237-240, January 1995.
 
[17]  Beguemsi, T., N’guessan, R.B., Bede, L., Téa, C.G., Pradère, J.P. and N'guessan,Y.T., “Substituted 1-thia-3-azabutadienes the (4+2) reaction of cyclocondensation and cycloreversion with acetylenes:experimental and a MO theoretical study”, Phys. Chem. News, 33, 116-120, January 2007.
 
[18]  Bede, A.L., Koné, M., Assoma, A.B., Alao, L.L., Beguemsi ,T. S., Tea, C.G. and N’Guessan, Y.T, “Theoretical Study of the Influence of Substituants on the Reactions of Cycloaddition-Cycloreversion of 4H-1, 3-Thiazines”, Eur. J. S. R., 43 (4), 480-494, 2010.
 
[19]  Eyring, H., “The Activated Complex and the Absolute Rate of Chemical Reactions”, Chem. Rev., 17 (1), 65–77, August 1935.
 
[20]  Fujimoto, H. and Fukui, K., “Molecular Orbital Theory of Chemical Reactions”, Advances in Quantum Chemistry, 6, 177-201, 1972.
 
[21]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E., Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K., N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B., Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M., Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J., B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K., Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S., Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D., Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I., Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A., Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
 
[22]  Domingo, L. R., “Theoretical Study of the 1, 3-Dipolar Cycloaddition Reactions of Azomethine Ylides A DFT Study of Reaction between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile”, J. Org. Chem., 64 (11), 3922-3929, May 1999.
 
[23]  Domingo, L. R. and Asensio, A., “A DFT Study of the Domino Inter [4 + 2]/Intra [3 + 2] Cycloaddition Reactions of Nitroalkenes with Enol Ethers”, J. Org. Chem., 65 (4), 1076-1083, January 2000.
 
[24]  Domingo, L. R., “Theoretical Study of 1, 3-Dipolar Cycloaddition Reactions with Inverse Electron Demand−A DFT Study of the Lewis Acid Catalyst and Solvent Effects in the Reaction of Nitrones with Vinyl Ethers”, Eur. J. Org. Chem., 12, 2265-2272, June 2000.
 
[25]  Carda, M., Portolés, R., Murga, J., Uriel, S., Marco, J.A., Domingo, L.R., Zaragozá, R.J. and Röper, H., “Stereoselective 1,3-Dipolar Cycloadditions of a Chiral Nitrone Derived from Erythrulose. An Experimental and DFT Theoretical Study”, J. Org. Chem., 65 (21), 7000-7009, September 2000.
 
[26]  Chuchani, G., Rotinov, A., Andrés, J., Domingo, L.R., Safont, V.S., “A Combined Experimental and Theoretical Study of the Homogeneous, Unimolecular Decomposition Kinetics of 3-Chloropivalic Acid in the Gas Phase”, J. Phys. Chem. A., 105(10), 1869-1875, February 2001.
 
[27]  Mennucci, B. and Tomasi, J. “A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics”, J. Chem Phys., 107 (8), 3032-3041, May 1997.
 
[28]  Gonzalez, C. and Schlegel, H.B., “Reaction path following in mass-weighted internal coordinates”, J. Phys. Chem., 94 (14), 5523-5527, July 1990.
 
[29]  Gonzalez, C. and Schlegel, H.B., “Improved algorithms for reaction path following: Higher‐order implicit algorithms”, J. Chem. Phys., 95 (8), 5853-5860, June 1991.
 
[30]  J. W. Ochterski, “Thermochemistry in Gaussian”, 2000, Gaussian, Inc., 1-19, June 2, 2000.
 
[31]  Becke, A.D, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange”, J. Chem. Phys., 98, 5648-5652, 1993.
 
[32]  Belletête, M., Morin, J.F., Leclerc, M. and Durocher G., “A Theoretical, Spectroscopic, and Photophysical Study of 2,7-Carbazolenevinylene-Based Conjugated Derivatives”, J. Phys. Chem. A., 109(31), 6953-6959, July 2005.
 
[33]  Jun-Ichi, A., “Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons”, J. Phys. Chem. A., 103 (37), 7487-7495, August 1999.
 
[34]  Rivelino, R. and Canuto, S., “Conformational Stability of Furfural in Aqueous Solution: The Role of Hydrogen Bonding”, Braz. J. Phys., 34 (1), 84-89, Mar 2004.
 
[35]  Wong, M.W., Frisch, M.J., Wiberg, K.B., “Solvent effects 1 The mediation of electrostatic effects by solvents”, J. Am. Chem. Soc., 113(13), 4776-4782, June 1991.
 
[36]  Xavier, S., Periandy, S. and Ramalingam, S., “NBO, conformational, NLO, HOMO–LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 306–320, February 2015.