Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2018, 6(1), 17-22
DOI: 10.12691/jmpc-6-1-3
Open AccessArticle

Plasmodium Resistance to Antimalarial Drugs: Functional Theory of Density (DFT) Study of the Stability and Reactivity of Heme-Artemisinin Adducts

Affoué Lucie Bédé1, Amon Benjamine Assoma1, El Hadji Sawaliho Bamba1, , Maftei Dan2 and Ionel Humelnicu2

1Laboratoire de Chimie Organique Structuralle, Université Félix Houphouët-Boigny 22 BP582 Abidjan22 (Côte-d’Ivoire)

2Département de Chimie Physique et Théorique, Faculté de Chimie, Université «Alexandru Ioan Cuza» de Iasi-Roumanie

Pub. Date: May 10, 2018

Cite this paper:
Affoué Lucie Bédé, Amon Benjamine Assoma, El Hadji Sawaliho Bamba, Maftei Dan and Ionel Humelnicu. Plasmodium Resistance to Antimalarial Drugs: Functional Theory of Density (DFT) Study of the Stability and Reactivity of Heme-Artemisinin Adducts. Journal of Materials Physics and Chemistry. 2018; 6(1):17-22. doi: 10.12691/jmpc-6-1-3


This study is part of the search for solutions to the resistance of the parasite to antimalarials. The aim of this work is to analyze the relative stability and reactivity of adducts in order to understand the resistance of the parasite to artemisinin. The DFT/B3LYP/GenECPs method associated with bases 6-31G, 6-31G ** and LANL2DZ is used to perform these calculations. On one hand analysis of the thermodynamic quantities of formation and reaction revealed that β adduct is the most stable among the studied adducts. In other words, the latter is the majority product of the interaction between heme and artemisinin. On the other hand, the adduct γ is the least stable. The values of the pameters such as dipole moments, intramolecular hydrogen bond lengths and thermodynamic parameters (formation and reaction quantities) have shown that it can exist a correlation between the following three parameters those are the relative stability of adducts (α, β, δ), their dipole moment and the binding intramolecular hydrogen. The analysis of the Frontier Molecular Orbitals also showed that the β adduct is susceptible to electrophilic attack, unlike the γ adduct, which is rather favorable to nucleophilic attack and can be the most excited component. Moreover, the determination of the alkylation rate will be considered in order to specify the order of complexation of the meso positions α, β and δ of the heme.

malaria adducts heme artemisinin DFT/B3LYP/genECPs

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Timms, A.R. and Bueding, E., “Studies of a proteolytic enzyme from Schistosoma mansoni”, Brit. J.Pharmacol., 14 (1), 68-73, March 1959.
[2]  Vroman, J.A. and Alirm, G.M., “Current progress in the chemistry, medicinal chemistry and drug design of artemisinin based antimalarials”, Curr. Pharm. Design, 5, 101-138, February 1999.
[3]  Touze, J.E., Fourcade, L., Pradines, B., Hovette, P., Paule, P. and Heno, Ph., “Les modes d’action des antipaludiques. Intérêt de l’association atovaquone-proguanil”, Symposium, Medecine Tropicale 2002, 62, 219-224.
[4]  Pradines, B., Vial, H. and Olliaro, P., “Prophylaxie et traitement du paludisme : problèmes, récents développements et perspectives”. Synthèse, Medecine Tropicale 2003, 63, 79-98.
[5]  Ebiamadon, A., Umoren E.U., Fraideh, B., Pedro M.M., Jorge, F.S.F., Devanand, L., Xianli, W. and Ronald L.P., “Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L.”, Food Chemistry, 115(4), 1240-1246, August 2009.
[6]  Robert, A., Cazelles, J. and Meunier, B., “Characterization of the alkylation product of heme by the antimalarial drug artemisinin”. Angew. Chem. Int. Ed., 40, 1954-1957, May 2001.
[7]  Robert, A., Coppel, Y. and Meunier, B., “Alkylation of heme by the antimalarial drug artemisinin”, Chem. Commun, 0, 414-416, Janvier 2002.
[8]  Pradinesa, B., Dormoi, J., Briolant S., Bogreau H. and Rogier, C., “La resistance aux antipaludiques”, Revue Francophone Des Laboratoires, 2010 (422), 51-62, May 2010.
[9]  Dondorp, A.M., Fairhurst, R.M., Slutsker, L., John, R.M.A., Breman, J.G., Guerin, P.J., Wellems, T.E., Ringwald, P., Newman, R.D. and Plowe, C.V., “The threat of artémisinine-resistant malaria”, N. Engl. J. Med., 365, 1073-1075, September 2011.
[10]  Didier, M., Frédéric, A. and Odile, M.P., “Étude de la résistance de Plasmodium falciparum aux antipaludiques au sein du réseau international des Instituts Pasteur (RIIP-Palu)”, Med. Sci. (Paris), 29(6-7), 647–655, July 2013.
[11]  Nosten, F. and White, N.J, “Artemisinin-based combination treatment of falciparum malaria”, Am J Trop Med Hyg , 77(6), 181-192, July 2007.
[12]  Eastman, R.T. and Fidock, D.A., “Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria”, Nat. Rev. Microbiol., 7, 864-874, November 2009.
[13]  Noedl, H., Se, Y., Schaecher, K. and Smith, B.L., “Evidence of artemisinin-resistant malaria in western Cambodia”, N. Engl. J. Med., 359, 2619-2620, December 2008.
[14]  Wongsrichanalai, C. and Meshnick, S.R., “Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border”, Emerg. Infect. Dis., 14 (5), 716–719, May 2008.
[15]  Dondorp, A.M., Nosten, F., Yi, P., Das, D., Phyo, A.P., Tarning, J., Lwin, K.M., Ariey, F., Hanpithakpong, W., Lee, S.J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S.S., Yeung, S., Singhasivanon, P., Nicholas, P.J., Lindegardh, N., Socheat, D. and Nicholas, J., “Artemisinin Resistance In Plasmodium Falciparum Malaria”, N. Engl. J. Med., 361, 455-467, July 2009.
[16]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford C. T., 2009.
[17]  Becke, A.D.,. “A new mixing of Hartree–Fock and local density-functional theories”, J. Chem. Phys., 98(2), 1372-1377, October 1993.
[18]  Lee, C., Yang, W. and Parr, R.G., “Development of the Colle–Salvetti correlationenergy formula into a functional of the electron density”, Phys. Rev. B, 37(2), 785-789, January 1988.
[19]  Hay, P.J. and Willard, R.W., “Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals”, J. Chem. Phys., 82(1), pp 299-310, September 1985.
[20]  Lovallo, C.C. and Klobukowski, M., “Development of new pseudopotential methods: Improved model core potentials for the first-row transition metals”, J. Comput. Chem., 24, 1009-1015, May 2003.
[21]  Cossi, M., Rega, N., Scalmani, G. and Barone, V., “Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model”, J. Comput. Chem., 24, 669-681, March 2003.
[22]  J. W. Ochterski, “Thermochemistry in Gaussian”, 2000, Gaussian, Inc., 1-19, June 2, 2000.
[23]  Becke, A. D., “Density‐Functional Thermochemistry. III. The Role of Exact Exchange”, J. Chem. Phys., 98, 5648-5652, 1993.
[24]  Belletête, M., Morin, J.F., Leclerc, M. and Durocher, G., “A Theoretical, Spectroscopic, and Photophysical Study of 2, 7-Carbazolenevinylene-Based Conjugated Derivatives”, J. Phys. Chem. A, 109(31), 6953-6959, July 2005.
[25]  Lewis, D.F.V., Ioannides, C. and Parke, D.V., “Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure-activity relationships”, Journal Xenobiotica, 24(5), 401-408, September 2008.
[26]  Zhou, Z. and Parr, R.G., “Activation hardness: new index for describing the orientation of electrophilic aromatic substitution”, J. Am. Chem. Soc., 112(15), 5720-5724, July 1990.
[27]  Kikuchi, O., “Systematic QSAR Procedures with Quantum Chemical Descriptors”, Molecular Informatics, 6(4), 179–184, 1987.
[28]  Rivelino, R., Canuto, S. and Canuto, K., “Conformational Stability of Furfural in Aqueous Solution: The Role of Hydrogen Bonding”, Braz. J. Phys., 34(1), 84-89, March 2004.
[29]  Wong, M.W., Frisch, M.J. and Wiberg, K. B., “Solvent effects. 1. The mediation of electrostatic effects by solvents”, J. Am. Chem. Soc., 113 (13), 4776-4782, June 1991.
[30]  Bondi, A., “van der Waals Volumes and Radii”, J. Phys. Chem., 68 (3), 441-451, March 1964.
[31]  Rowland, R.S., “Taylor, R.,.Intermolecular nonbonded contact distances inorganic crystal structures: comparison with distances expected from van der Waals Radii”, J. Phys. Chem., 100 (18), 7384-7391, May 1996.
[32]  Ziao, N., Laurence, C. and Le Questel, J.Y., “Amino nitrogen and carbonyl oxygen in competitive situations: which is the best hydrogen-bond acceptor site?”, Cryst. Eng. Comm., 4, 326-335, Apr 2002.
[33]  Desiraju, G.R. and Steiner, T., The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford, University Press, 1999.
[34]  Kassi, K.F., Koné, M.G-R, Affi, S.T. and Ziao, N., “ONIOM Method Characterization of Hydrogen Bonding Sites of Mycolactone A/B, a Buruli Ulcer Toxin”, Computational Chemistry, 5, 103-112, July2017.
[35]  Kone, M.G.R., Affi, S.T., Ziao, N., Bamba, K. and Assanvo, E.F., “Hydrogen bonding sites in benzimidazolyl-chalcones molecules: An ab initio and DFT investigation”, Journal of Chemical and Pharmaceutical Research, 7(12), 805-812, 2015.
[36]  Traore, Y., Bamba, K., Ziao, N., Affi, S.T. and Koné, M.G-R., “Quantum Chemical Characterization of Hydrogen Bonding Sites in Three 4-(4-Halo-Phenyl)-6-(Furan-2-yl) Pyrimidin-2-Amine Derivatives”, Computational Chemistry, 5, 91-102, July 2017.
[37]  Perrin, C.L. and Nielson, J.B., “Strong hydrogen bonds in chemistry and biology”, Annu. Rev. Phys. Chem. 48, 511-544, October 1997.