Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2018, 6(1), 9-16
DOI: 10.12691/jmpc-6-1-2
Open AccessArticle

Photovoltaic Properties of Aluminum Doped Zinc Oxide Electrodes Based on Variation of Aluminum Impurities in the Semiconductor

M. D. Tyona1, , R. U. Osuji2, C. D. Lokhande3 and F. I. Ezema2

1Department of Physics, Benue State University, P.M.B. 102119, Makurdi, Nigeria

2Department of Physics and Astronomy, University of Nigeria, P.O. Box 2201, Nsukka, Nigeria

3Department of Physics, D Y Patil University, Kolhapur, (M S) India

Pub. Date: February 05, 2018

Cite this paper:
M. D. Tyona, R. U. Osuji, C. D. Lokhande and F. I. Ezema. Photovoltaic Properties of Aluminum Doped Zinc Oxide Electrodes Based on Variation of Aluminum Impurities in the Semiconductor. Journal of Materials Physics and Chemistry. 2018; 6(1):9-16. doi: 10.12691/jmpc-6-1-2


Photoelectrochemical (PEC) solar cell studies of Al doped zinc oxide (AZO) thin film electrodes has been carried out by photocurrent-voltage (I-V) characteristic. The concentration of Al in ZnO was varied between 1-5 at.% in order to study the effect of the variation on the photovoltaic performance of the electrodes. The current-voltage (I-V) characteristics measured in the dark and under 80 W simulated illumination revealed enhanced PV performance for the AZO electrodes in contrast to the undoped electrode. The best response was achieved for AZO electrode with 2 at.% Al concentration thus, recording higher conversion efficiency and fill factor. This is a clear indication that AZO electrodes are superior to undoped ZnO in PV applications. The remarkable enhanced properties of Al doping on ZnO were carefully studied by means of thickness measurement, X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-Vis spectroscopy, and the results were in good agreement, and confirmed that AZO thin film electrodes are better for PV applications than undoped ZnO semiconductor in sodium sulphate (Na2SO4) electrolyte.

AZO electrode Photoelectrochemical Al concentration chemical bath deposition X-ray diffraction film thickness

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Kim, K. H., Utashiro, K., Abe, Y., Kawamura, M., “Structural properties of zinc oxide nanorods grown on Al-doped zinc oxide seed layer and their applications in dye-sensitized solar cells”, Mater., 7, 2522-2533, 2014.
[2]  El Manouni, A., Manjón, F.J., Mollar, M., Marí, B., Gómez, R., López, M.C., Ramos-Barrado J.R., “Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis”, Superlattices Microstruct., 39, 185-192, 2006.
[3]  Hsu, C. H. and Chen, D. H., “CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting”, Nanoscale Res. Lett., 7, 593-598, 2012.
[4]  Becerril, M., Silva-López, H., Guillén-Cervantes, A., Zelaya-Ángel, O., “Aluminum-doped ZnO polycrystalline films prepared by co-sputtering of a ZnO-Al target”, Revista Mexicana De Física, 60, 27-31, 2014.
[5]  Alkahlout, A., Al Dahoudi, N., Grobelsek, I., Jilavi, M., de Oliveira, P. W., “Synthesis and characterization of aluminum doped zinc oxide nanostructures via hydrothermal route” J. Mater., 235638, 1-8, 2014.
[6]  Onkar Singh, Manmeet Pal Singh, Ravi Chand Singh., “Aluminum doping impact on morphology and sensing response of zinc oxide nanostructures”, The 14th International Meeting on Chemical Sensors, 2012.
[7]  Cebulla, R., Wendt, R., Ellmer, K., “Al-Doped Zinc Oxide films deposited by simultaneous RF and DC excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties”, J. Appl. Phys. 83, 1087-1095, 1998.
[8]  Vanaja, A., Ramaraju, G. V. and Srinivasa Rao, K., “Structural and Optical Investigation of Al Doped ZnO Nanoparticles Synthesized by Sol-gel Process”, Ind. J. Sci. Technol., 9(12), 23-28, 2016.
[9]  Kumar, B., Kim, S. W., “Energy harvesting based on semiconducting piezoelectric ZnO nanostructures”, Nano Energy, 1, 342-355, 2012.
[10]  Musat, V., Teixeira, B., Fortunato, E., Monteiro, R. C. C., Vilarinho, P., “Al-doped ZnO thin films by sol–gel method” Surf. Coat. Technol., 180-181, 659-662, 2004.
[11]  Lopes, T., Andrade, L., Ribeiro, H. A., Mendes, A., “Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy”, Int. J. Hydrogen Energy, 35, 11601-11608, 2010.
[12]  Hao, Y., Yang, M., Li, W., Qiao, X., Zhang, L., Cai, S., “A photoelectrochemical solar cell based on ZnO/dye/polypyrrole film electrode as photoanode’ Sol. Energy Mater. Sol. Cells, 60, 349-359, 2000.
[13]  Dharmadasa, I. M., Ojo, A. A., Salim, H. I., Dharmadasa, R., “Next Generation solar cells based on graded bandgap device structures utilising rod-type nano-materials”, Energies 8, 5440-5458, 2015.
[14]  Tyona, M. D., Osuji, R. U., Ezema, F. I., Jambure, S. B., Lokhande, C. D., “Enhanced photoelectrochemical solar cells based on natural dye-sensitized Al-doped zinc oxide electrodes”, Adv. Appl. Sci. Res., 7, 18-31, 2016.
[15]  Grätzel, M., “Photoelectrochemical cells”, Nature, 414, 338-344, 2001.
[16]  Tyona, M. D., Osuji, R. U., Ezema, F. I., Jambure, S. B., Lokhande, C. D., “Highly efficient natural dye-sensitized photoelectrochemical solar cells based on Cu-doped zinc oxide thin film electrodes”, Adv. Appl. Sci. Res., 6, 7-20, 2015.
[17]  Yousefi, M., Amiri, M., Azimirad, R., Moshfegh, A. Z., “Enhanced photoelectrochemical activity of Ce doped ZnO nanocomposite thin films under visible light”, J. Electroanal. Chem., 661, 106-112, 2011.
[18]  Lee, S. H., Han, S. H., Jung, H. S., Shin, H., Lee, J., Noh, J. H., Lee, S., Cho, I. S., Lee, J. K., Kim, J., Shin, H., “Al-Doped ZnO thin film: A new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells”, J. Phys. Chem .C, 114, 7185-7189, 2010.
[19]  Yao, P. C., Hang, S. T., Lin, Y. S., Yen, W. T., Lin, Y. C., “Optical and electrical characteristics of Al-doped ZnO thin films prepared by aqueous phase deposition” Appl. Surf. Sci., 257, 1441-1448, 2010.
[20]  Al-Ghamdi, A. A., Al-Hartomy, O. A., El Okr, M., Nawar. A. M., El-Gazzar, S., El-Tantawy, F., Yakuphanoglu, F., “Semiconducting properties of Al doped ZnO thin films”, Spectrochimica Acta, Part A, 131, 512-517, 2014.
[21]  Zhao, X., Shen, H., Zhang, Y., Li, X., Zhao, X., Tai, M., Li, J., Li Jianbao, Li Xin, and Lin Hong, , “Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells”, Appl. Mater. Interfaces, 8(12), 7826-7833, 2016.
[22]  Wen-Wu Zhong, Fa-Min Liu, Lu-Gang Cai, Xue-Quan Liu, Yi Li, , “Effect of Growth Time on the Structure, Raman Shift and Photoluminescence of Al and Sb Codoped ZnO Nanorod Ordered Array Thin Films”, Appl. Surf. Sci., 257, 9318- 9322, 2011.
[23]  Yu, J., Yuan, Z., Han, S. and Ma, Z., “Size-Selected Growth of Transparent Well-Aligned ZnO Nanowire Arrays”, Nanoscale Res. Lett., 7, 517-525, 2012
[24]  Wang, H. and Xie, C., “Controlled Fabrication of Nanostructured ZnO Particles and Porous Thin Films Via a Modified Chemical Bath Deposition Method”, J. Cryst. Growth, 291, 187-196, 2006.
[25]  Xia, Q.X., Hui, K.S., Hui, K.N., Hwang, D.H., Jai Singh, Cho, Y.R., Lee, S.K., Zhou, W., Wan, Z.P., Chi-Nhan Ha Thuc, Son, Y.G., “High quality p-type N-doped AZO nanorod arrays by an ammonia-assisted hydrothermal method”, Mater. Lett., 78, 180-183, 2012.
[26]  Mohanty, B. C., Jo, Y. H., Yeon, D. H., Choi, I. J., and Cho, Y. S., “Stress-induced anomalous shift of optical band gap in ZnO:Al thin films”, Appl. Phys. Lett. 95, 62103-62111, 2009.
[27]  Shannon, R. D., “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallogr., Sect. A: Found. Adv. 32, 751-767, 1976.
[28]  Chow, L., Lupan, O., Chai, G., Khallaf, H., Ono, L., Roldan, K., Cuenya, B., Tiginyanu, I. M., Ursak, V. V., Sontea, V., Schulte, A., “Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response”, Sens. Actuators, A, 189, 399-408, 2013.
[29]  Burstein, E., “Anomalous optical absorption limit in InSb”, Phys. Rev. 93, 632-647, 1954.
[30]  Moss, T. S., “State-of-the-Art Program on Compound Semiconductors”, Proc Phys Soc London, B67, 775-782, 1954.
[31]  Tyona, M. D., Osuji, R. U., Asogwa, P. U., Jambure, S. B., Ezema, F. I., “Structural modification and band gap tailoring of zinc oxide thin films using copper impurities” J. Solid State Electrochem. 21, 2629-2637, 2017.
[32]  Jayaprakashan, R., Hodes, G., “Non-aqueous electrodeposition of ZnO and CdO films”, Thin Solid Films, 440, 19-27, 2003.
[33]  Shinde, N. M., Deshmukh, P. R., Patil, S. V., Lokhande, C. D., “Aqueous chemical growth of Cu2ZnSnS4 (CZTS) thin films: Air annealing and photoelectrochemical properties”, Mater. Res. Bull., 48, 1760-1766, 2013.
[34]  Lokhande, C. D., Pawar, S. H., “Electrochemical photovoltaic cells for solar energy conversion” Mater. Chem. Phys., 11, 201-277, 1984.
[35]  Scregg, J., Dale, P., Peter, L., Zopp, G., Forbes, L., “New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material”, Phys. Status Solidi A, 245, 1772-1776, 2008.