Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2013, 1(3), 51-57
DOI: 10.12691/jmpc-1-3-5
Open AccessArticle

Physical and Chemical Treatments on Chitosan Matrix to Modify Film Properties and Kinetics of Biodegradation

S. Rivero1, M. A. García1, and A. Pinotti1, 2

1Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET La Plata, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina

2Facultad de Ingeniería, UNLP, La Plata, Argentina

Pub. Date: November 05, 2013

Cite this paper:
S. Rivero, M. A. García and A. Pinotti. Physical and Chemical Treatments on Chitosan Matrix to Modify Film Properties and Kinetics of Biodegradation. Journal of Materials Physics and Chemistry. 2013; 1(3):51-57. doi: 10.12691/jmpc-1-3-5


This work was focused on analyzing the effect produced by the addition of tannic acid as a crosslinking agent of chitosan matrix and the influence of the heat treatment applied. Taking into account those aspects relevant for packaging applications, thermal stability, mechanical properties, water resistance and kinetics of biodegradation of the film were monitored. The chemical crosslinking as well as the curing of the matrices have improved the mechanical properties and those related to the water affinity such as solubility, permeability and contact angle. Although both processes had an influence on the extent of the film degradation, these materials conserved their biodegradable character. Moreover, it was observed a synergistic effect of both chemical and physical treatments since the two processes in simultaneous caused further delay in the biodegradation. Consequently, in these materials the access to fungal attack and all those reactions mediated by the presence of water were restricted, which confirmed the higher stability of the matrices submitted to chemical or physical crosslinking.

chitosan film tannic acid heat treatment biodegradation crosslinking hydrophilic character

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Alvarez, V.A., Ruseckaite, R.A., Vázquez A., “Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil”, Polym. Degrad. Stab., 91, 3156-3162, 2006.
[2]  Aelenei, N., Popa, M.I., Novac, O., Lisa, G., Balaita, L., “Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release”, J. Mater. Sci.: Mater. Med., 20, 1095-1102, 2009.
[3]  Aider, M., “Chitosan application for active bio-based films production and potential in the food industry: Review”, LWT - Food Sci. Technol., 43(6), 837-842, 2010.
[4]  Elsabee, M.Z., Abdou, E.S., “Chitosan based edible films and coatings: a review”, Mater. Sci. Eng. C. Mater. Biol. Appl., 33(4), 1819-1841, 2013.
[5]  Bulwan, M., Antosiak-Iwańska, M., Godlewska, E., Granicka, L., Zapotoczny, S., Nowakowska, M., “Chitosan-Based Nanocoatings for Hypothermic Storage of Living Cells”, Macromol Biosci, 2013.
[6]  Jianglian, D., Shaoying, Z., “Application of chitosan based coating in fruit and vegetable preservation: A review”, J Food Process. Technol., 4, 227, 2013.
[7]  Günlü, A., Sipahioğlu, S., Alpas, H., “The effect of chitosan-based edible film and high hydrostatic pressure process on the microbiological and chemical quality of rainbow trout (Oncorhynchus mykiss Walbaum) fillets during cold storage (4 ± 1°C)”, High Pressure Res., 2013.
[8]  Leceta, I., Guerrero, P., Ibarburu, I., Dueñas, M.T., de la Caba, K., “Characterization and antimicrobial analysis of chitosan-based films”, J.Food Eng., 116(4) 889-899, 2013.
[9]  Almeida, E.V.R., Frollini, E., Castellan, A., Coma, V., “Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution”, Carbohyd. Polym., 80, 655-664, 2010.
[10]  Silva-Weiss, A., Bifani, V., Ihl, M., Sobral, P.J.A., Gómez-Guillén, M.C., “Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract”, Food Hydrocolloid., 31, 458-466, 2013.
[11]  Isenburg, J.C., Karamchandani, N.V., Simionescu, D.T., Vyavahare, N.R., “Structural requirements for stabilization of vascular elastin by polyphenolic tannins”. Biomaterials, 27, 3645-3651, 2006.
[12]  Cao, N., Fu, Y., He, J., 2007. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloid, 21, 575-584.
[13]  Peña, C., de la Caba, K., Eceiza, A., Ruseckaite, R., Mondragon I., “Enhancing water repellence and mechanical properties of gelatin films by tannin addition”. Bioresour. Technol. 101, 6836-6842, 2010.
[14]  Zhang, X., Do, M.D., Casey, P., Sulisto, A., Qiao, G.G., Lundin, L., Lillford, P., Kosaraju, S., “Chemical modification of gelatin by a natural phenolic cross-linker, tannic acid”, J. Agric. Food. Chem., 58, 6809-6815, 2010.
[15]  Rivero, S., García, M.A., Pinotti, A., “Crosslinking capacity of tannic acid in plasticized chitosan films”, Carbohyd. Polym,. 82, 270-276, 2010.
[16]  Rivero, S., García, M.A., Pinotti, A., “Heat treatment to modify the structural and physical properties of chitosan-based films. J. Agric. Food Chem., 60(1), 492-499, 2012.
[17]  Rimdusit, S., Jingjid, S., Damrongsakkul, S., Tiptipakorn, S., Takeichi, T., “Biodegradability and property characterizations of methyl cellulose: Effect of nanocompositing and chemical crosslinking”, Carbohyd. Polym., 72, 444-455, 2008.
[18]  ASTM D638–01. Standard test methods for tensile properties of thin plastic sheeting. Annual book of ASTM: American Society for Testing and Materials, Philadelphia, PA, 2001.
[19]  ASTM D5988-03, “Standard Test Method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting”, Annual book of ASTM: American Society for Testing and Materials, Philadelphia, PA, 2003.
[20]  Ludueña, L., Vázquez, A., Alvarez, V., “Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications”, Carbohyd. Polym., 87, 411-421, 2012.
[21]  Martucci, J. F., Ruseckaite, R.A., “Biodegradation of three-layer laminate films based on gelatin under indoor soil conditions”, Polym.Degrad.Stab, 94, 1307-1313, 2009.
[22]  González, A. Igarzabal, C. Soy protein - Poly (lactic acid) bilayer films as biodegradable material for active food packaging Food Hydrocolloids 33 (2013) 289-296.
[23]  Fávaro, S.L., Rubira, A.F., Muniz, E.C., Radovanovic, E., “Surface modification of HDPE, PP, and PET films with KMnO4/HCl solutions”, Polym. Degrad. Stab., 92, 1219-1226, 2007.
[24]  Jin, J., Song, M., Hourston, D.J., “Novel Chitosan-Based Films Cross-Linked by Genipin with Improved Physical Properties”, Biomacromolecules, 5, 162-168, 2004.
[25]  Ritthidej, G.C., “Phaechamud, T., Koizumi, T., Moist heat treatment on physicochemical change of chitosan salt films”, Int. J. Pharm., 232, 11-22, 2002.
[26]  Martucci, J.F., Vázquez, A., Ruseckaite, R.A., “Nanocomposites based on gelatin and montmorillonite: Morphological and thermal studies”, J. Thermal Anal. Calorim., 89(1), 117-122, 2007.
[27]  Beppu, M.M., Vieira, R.S., Aimoli, C.G., Santana, C.C., “Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption”, J. Membr. Sci., 301, 126-130, 2007.
[28]  Neto, C.G.T., Giacometti, J.A., Job, A.E., Ferreira, F.C., Fonseca, J.L.C., Pereira, M.R., “Thermal analysis of chitosan based networks”, Carbohyd. Polym., 62, 97-103, 2005.
[29]  Peniche-Covas, C., Arguelles-Monal, W., San Roman, J., “A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan”, Polym. Degrad. Stab., 39, 21-28, 1993.
[30]  Xu, J., McCarthy, S.P., Gross, R.A., Kaplan, D., “Chitosan film acylation and effects on biodegradability”, Macromol., 39, 3436-3440, 1996.
[31]  Fernandez-Saiz, P., Lagarón, J.M., Oci, M.J., “Optimization of the film-forming and storage conditions of chitosan as an antimicrobial agent”, J. Agric. Food Chem., 57, 3298-3307, 2009.
[32]  Kuo, P-C., Sahu, D., Yu, H.H., “Properties and biodegradability of chitosan/nylon 11 blending films”, Polym. Degrad. Stab., 91, 3097-3102, 2006.
[33]  Zhang, L., Liu, H., Zheng, L., Zhang, J., Du, Y., Feng, H., “Biodegradability of regenerated cellulose films in soil”, Ind. Eng. Chem. Res., 35, 4682-4685, 1996.
[34]  Wu, C-S. “A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/ chitosan and acrylic acid grafted polycaprolactone/ chitosan”, Polym., 46, 147-155, 2005.
[35]  Zhao, Q., Tao, J., Yam, R.C.M., Mok, A.C.K., Li, R.K.Y, Song, C., “Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium”, Polym. Degrad. Stab., 93, 1571-1576, 2008.
[36]  Weian, Z., Wei, L., Yue, F., “Synthesis and properties of a novel hydrogel nanocomposites”, Mater. Lett., 59, 2876-2880, 2005.
[37]  Brugnerotto, J., Lizardi, J, Goycoolea, F., ArguÈelles-Monal, W., DesbrieÁres, J., Rinaudo, M., “An infrared investigation in relation with chitin and chitosan characterization”, Polym., 42, 3569-3580, 2001.
[38]  Ostrowska-Czubenko, J., Gierszewska-Druzynska, M., “Effect of ionic crosslinking on the water state in hydrogel chitosan membranes”, Carbohyd. Polym., 77, 590-598, 2009.