Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2013, 1(3), 37-44
DOI: 10.12691/jmpc-1-3-3
Open AccessArticle

Synthesis Polysulfone-Acetylethanol Ultrafiltration Membranes. Application to Oily Wastewater Treatment

Martin Alberto Masuelli1,

1Instituto de Física Aplicada-CONICET, Cátedra de Química Física II, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, San Luis, Argentina

Pub. Date: August 28, 2013

Cite this paper:
Martin Alberto Masuelli. Synthesis Polysulfone-Acetylethanol Ultrafiltration Membranes. Application to Oily Wastewater Treatment. Journal of Materials Physics and Chemistry. 2013; 1(3):37-44. doi: 10.12691/jmpc-1-3-3


Chemical functionalization of polymers after the synthesis of membranes has great importance for various applications separative processes of industrial or environmental interest. Polysulfone (PSf) is one of the most applied polymers for separative processes used especially in membrane technology, due to its excellent chemical, mechanical and thermal properties. The functionalization of PSf makes it very attractive to give special characteristics due to their high hydrophobicity and membrane fouling fast. In this work PSf perform functionalization by the method of Friedel-Crafts with choroethyl chloroacetate and subsequent hydrolysis of chloroetyl group (-OH). After synthesizing the membrane is characterized by FT-IR ATR spectroscopy, 1HNMR, contact angle measurements, retention of polydisperse solutes and hydraulic permeability. Finally, the membranes tests fouling are performed with an oily wastewater emulsion. The fouling tests showed that the functionalized PSf membrane demonstrated significant anti-fouling property, suggesting the remarkable benefit for long-term operation in practical applications. Specifically, all the functionalized membranes reached almost 60% water flux recovery and were able to maintain the constant initial fluxes in filtration test, whereas the raw membrane only recovered 70.27% and suffered continuous decline. This promotion might be related to the increase of membrane surface hydrophilicity.

polysulfone-COEtOH membrane characterization oily wastewater

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Cheryan M., Rajagopalan, N. Membrane Processing of Oily Streams. Wastewater Treatment and Waste Reduction. J. Memb. Sci. 151. 13-28. 1998.
[2]  Higuchi, A., Mishima, S., Nakagawa, T. Separation of proteins by surface modified Polysulfone membranes. J. Memb. Sci. 57. 175-185. 1991.
[3]  Higuchi, A., Koga, Nakagawa, H. T. Surface-modified polysulfone hollow fibers. IV. Chloromethylated fibers and their derivatives. J. App. Polymer Sci. 46 449-457. 1992.
[4]  Rajesha Kumar, Arun M. Isloor, A. F. Ismail, Suraya A. Rashid, T. Matsuura. Polysulfone–Chitosan blend ultrafiltration membranes: preparation, characterization, permeation and antifouling properties. RSC Adv. 3, 7855-7861. 2013.
[5]  Peeva, P.D., Million, N., Ulbricht, M. Factors affecting the sieving behavior of anti-fouling thin-layer cross-linked hydrogel polyethersulfone composite ultrafiltration membranes. Journal of Membrane Science. 390-391. 99-112. 2012.
[6]  Peeva, P.D., Knoche, T., Pieper, T., Ulbricht, M. Performance of thin-layer hydrogel polyethersulfone composite membranes during dead-end ultrafiltration of various protein solutions. Industrial and Engineering Chemistry Research. 51 (21), 7231-7241. 2012.
[7]  Abdulgader, H.A., Kochkodan, V., Hilal, N. Hybrid ion exchange - Pressure driven membrane processes in water treatment: A review. Separation and Purification Technology 116, 253-264. 2013.
[8]  Chen, P., Kan, L., Liu, M. Research on treatment of oily wastewater by membrane filtration. Advanced Materials Research 671-674, 2750-2753. 2013.
[9]  Xing, W., Zhong, Z., Jing, W., Fan, Y. Controlling of membrane fouling based on membrane interface interactions. Huagong Xuebao/CIESC Journal 64 (1), 173-181. 2013.
[10]  Babu, P.R., Gaikar, V.G. Membrane Characteristics as Determinant in Fouling of UF Membranes. Sep. Purif. Tech. 24. 23-34. 2001.
[11]  Jancknecht, P., Lopez, A.D., Mendes, A.M. Removal of industrial cutting oil from oil emulsions by polymeric Ultra-and microfiltration membranes. Environ. Sci. Technol. 38, 18. 4878-4883. 2004.
[12]  Gryta, M., Karakulski K., Morawski, A. W. Purification of oily wastewater by hybrid UF/MD. Water Res. 35, 15. 3665-3669. 2001.
[13]  Mueller, J., Cen, Y., Davis, R. H. Crossflow microfiltration of oily water. J. Memb. Sci. 129. 221-235. 1997.
[14]  Masuelli, M., Ochoa, N. A., Marchese, J. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J. Memb. Sci 226. 203-211. 2003.
[15]  Fenko, L. A.; Bildyukevich, A. V. Phase state of the polysulfone-poly(ethylene glycol)-dimethylacetamide system. Polymer Science Series A, 55, 2, 75-81. 2013.
[16]  Yuzhong Zhang, Chunming Ma, Feng Ye, Ying Kong, Hong Li. The treatment of wastewater of paper mill with integrated membrane process. Desalination 236. 349-356. 2009.
[17]  Masuelli, M.A., Grasselli, M., Marchese, J., Ochoa, N.A. Preparation, structural and functional characterization of modified porous PVDF membranes by γ-irradiation. J. Memb. Sci. 389. 91-98. 2012.
[18]  Chakrabarty, B., Ghoshal, A.K., Purkait, M.K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Memb. Sci. 325. 427-437. 2008.
[19]  Chakrabarty, B., Ghoshal, A.K., Purkait, M.K. Preparation, characterization and performance studies of Polysulfone membranes using PVP as an additive. J. Memb. Sci. 315. 36-47. 2008.
[20]  Paul, Parneet. Comparing and Contrasting Traditional Membrane Bioreactor Models with Novel Ones Based on Time Series Analysis. Membranes 3. 16-23. 2013.
[21]  Agnieszka K. Hołda, Marjan De Roeck, Katrien Hendrix, Ivo F.J. Vankelecom. The influence of polymer purity and molecular weight on the synthesis of integrally skinned polysulfone membranes. J. Memb. Sci. 446. 113-120, June 2013.
[22]  Annadanam V. Sesha Sainath, A.V.R. Reddy. Modification of polysulfone with pendant carboxylic acid functionality for ultrafiltration membrane applications. Bull. Mater. Sci., 36, 2, 271-276. 2013.
[23]  Michael D. Guiver, S. Croteau, John D. Hazlett, 0. Kutowy Synthesis and Characterization of Carboxylated Polysulfones. British Polymer Journal 23. 29-39. 1990.
[24]  Chia-Chi Ho, Zydney, Andrew L. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration. J. Coll. Interface Sci. 232. 389-399. 2000.
[25]  Taniguchi, M., Kilduff, James E., Belfort, Georges. Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter. J. Memb. Sci. 222. 59-70. 2003.
[26]  Ma, Huimin, Hakim, Luis F., Bowman, Christopher N., Davis, Robert H. Factors affecting membrane fouling reduction by surface modification and backpulsing. J. Memb. Sci. 189. 255-270. 2001.
[27]  Lin, S.H., Lan, W.J. Waste oilrwater emulsion treatment by membrane processes. J. Hazardous Mat. 59. 189-199. 1998.
[28]  Xiaoying Zhu, Hong-En Loo, Renbi Bai. A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Memb. Sci. 436. 47-56. 2013.
[29]  Peeva, P.D., Million, N., Ulbricht, M. Factors affecting the sieving behavior of anti-fouling thin-layer cross-linked hydrogel polyethersulfone composite ultrafiltration membranes. J. Memb. Sci. 390-391. 99-112. 2012.
[30]  Yi-Fan Zhao, Li-Ping Zhu, Zhuan Yi, Bao-Ku Zhu, You-Yi Xu. Improving the hydrophilicity and fouling-resistance of Polysulfone ultraltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J. Memb. Sci. 440. 40-47. 2013.