Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2013, 1(2), 9-18
DOI: 10.12691/jmpc-1-2-1
Open AccessArticle

Electron-phonon Pairing Mechanism for Superconductivity in K3C60 Fullerides

Daluram Yadav1, Nishchhal Yadav1 and Sanjay K. Ghosh1,

1School of Studies in Physics, Vikram University, Ujjain, India

Pub. Date: February 28, 2013

Cite this paper:
Daluram Yadav, Nishchhal Yadav and Sanjay K. Ghosh. Electron-phonon Pairing Mechanism for Superconductivity in K3C60 Fullerides. Journal of Materials Physics and Chemistry. 2013; 1(2):9-18. doi: 10.12691/jmpc-1-2-1


The electron pairing mechanism leading to superconducting state in K3C60 fullerenes is explored within the framework of strong coupling theory. The intercage interactions between C60 cages and expansion of lattice due to the intercalation of K atoms are investigated using the nearest neighbor interactions. The renormalized Coulomb repulsive parameter μ* and the electron phonon coupling strength λ are obtained for the intermolecular phonon frequency ωer, keeping in mind that the free electrons in lowest molecular orbital are coupled with intermolecular phonons. Tc is then estimated as 5 K, which is much lower as compared with the reported value. The electrons also couple with the intramolecular phonons then Tc enhances to 22 K. In this approach the carbon isotope effect exponent, the energy gap ratio, effect of pressure and volume on Tc is calculated which support the superconducting state.

fullerenes intermolecular phonons intramolecular phonons transition temperature carbon isotope effect energy gap ratio

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P. and Kortan, A.R., “Superconductivity at 18 K in potassium-doped C60,” Nature, 350. 600. 1991.
[2]  Forro, L. and Mihaly, L., “Electronic properties of doped fullerenes” Rep. Prog. Phys. 64. 649. 2001.
[3]  Ganin, A. Y., Takabayashi, Y., Khimyak, Y.Z., “Bulk superconductivity at 38 K in a molecular system,” Nature Mater., 7. 367-371. 2008.
[4]  Mitsuhashi, R., Suzuki, Y.,, Yamanari, Y., Mitamura, H., Kambe, T., Ikeda, N., Okamoto, H., Fujiwara, A., Yamaji, M., Kawasaki, N., Maniwa, Y. and Kubozono, Y., “Superconductivity in alkali metal-doped picene,” Nature, 464. 76-79. 2010.
[5]  Wang, X.F.,, Liu, R.H., Gui, Z., Xie, Y.L., Yan, Y.J., Ying, J.J., Luo, X.G. and Chen, X. H., “Superconductivity at 5K in alkali-metal doped phenantherene’’ Nat. Comm., 2. 507. 2011.
[6]  Kubozono, Y., Mitamura, H., Lee, X., He, X., Yamanari, Y., Takahashi, Y., Suzuki, Y., Kaji, Y., Eguchi, R., Akaike, K., Kambe, T., Okamoto, H., Fujiwara, A., Kato, T., Kosugi, T. and Aoki, H., Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors” Phys. Chem. Chem. Phys., 13. 16476. 2011.
[7]  Xue, M., Cao, T., Wang, D., Wu, Y., Yang, H., Dong, X., He, J., Li, F. and Chen, G.F., “Superconductivity above 30 K in alkali metal doped hydrocarbon," Sci. Rep., 2, 389, 2012.
[8]  Gunnarson, O., “Superconductivity in fullerides,” Rev. Mod. Phys., 69. 575.1997.
[9]  Ricco, M., Fumera, G., Shiroka, T., Ligabue, O., Bucci, C. and Bolzoni, F., “Metal to insulator evolution in (NH) XNaK2C60,” Phys. Rev. B, 68. 035102. 2003.
[10]  Ganin, A.Y., Takabayashi, Y., Jeglic, P., Arcon, D., Potocnik, A., Baker, P.J., Ohishi, Y., McDonald, M.T., Tzirakis, M.D., McLennan, A., Darling, G.R., Takata, M., Rosseinsky, M.J. and Prassides, K., “Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott transition,” Nature, 466. 221-225. 2010.
[11]  Takabayashi, Y., Ganin, A.Y., Jeglič, P., Arčon, D.,Takano, T., Iwasa, Y., Ohishi, Y., Takata, M., Takeshita, N., Prassides, K. and Rosseinsky, M. J., “The disorder-free non-BCS superconductor Cs3C60 emerges from an antiferromagnetic insulator parent state,” Science, 323, 1585-1590, 2009.
[12]  Pintschovius, L., “Neutron studies of vibrations in fullerenes,” Rep. Prog. Phys., 59, 473, 1996.
[13]  Mitch, M.G., Chase, S. J. and Lannian, J. S., “Raman scattering and electron–phonon coupling in RbxC60,” Phys. Rev. Lett., 68, 883, 1992.
[14]  Belosludov, V.R. and Shpakov, V. P., “Lattice-dynamics study of K3C60,” Mod. Phys. Lett., 6, 1209, 1991.
[15]  Chen, C.C. and Lieber, C.M., Isotope effect and superconductivity in metal doped C60,” Science, 259. 655. 1993.
[16]  Fuhrer, S., Cherrey, K., Zettl, A. and Cohen, M. L., “Carbon isotope effect in single-crystal Rb3C60,” Phys. Rev. Lett. 83. 404. 1999.
[17]  Ebbesen, T.W., Tsai, J. S., Tanigaki, K., Hiura, H., Shimakawa, Y., Kubo, Y., Hirosawa, T. and Mizuki, J., “Dopant isotope effect on superconductivity in Rb3C60,” Physica C, 203. 163. 1992.
[18]  Burk, B., Crespi, V.H., Zettl, A. and Cohen, M. L., “Rubidium isotope effect in superconducting Rb3C60,” Phys. Rev. Lett., 72. 3706. 1994.
[19]  Strizker, B. and Buckel, W., “Superconductivity in the palladium-hydrogen and the palladium deuterium systems,” Z. Phys. B, 257. 1. 1972.
[20]  Uemura, Y. J., Keren, A., Le, L.P., Luke, G.M., Sternlieb, B.J., Wu, W.D., Brewer, J.H., Whetten, R.L., Huang, S.M., Lin, S., Kaner, R.B., Diederich, F., Donovan, S., Gnmer, G. and Holczer, K., “Magnetic-field penetration depth in K3C60 measured by muon spin relaxation,” Nature, 352. 605. 1991.
[21]  Zhang, Z., Chen, C.C. and Lieber, C.M., “Tunneling spectroscopy of M3C60 superconductors: the energy gap, strong coupling, and superconductivity,” Science, 254. 1619. 1991.
[22]  DeGiorgi, L., Nicol, E.J., Klein, O., Gruner, G., Wachter, P., Huang, S.M., Wiley, J. and Kaner, R.B., “Optical properties of the alkali-metal-doped superconducting fullerenes: K3C60 and Rb3C60,” Phys. Rev. B., 49. 7012. 1994.
[23]  Kiefl, R.F., MacFarlane, W.A., Chow, K.H., Dunsiger, S., Duty, T.F., Johnston, T.M.S., Schneider, J.W., Sonier, J., Brad, L., Strongin, R.M., Fischer, J. E. and Smith III, A.B., “Coherence peak and superconducting energy gap in Rb3C60 observed by muon spin relaxation,” Phys. Rev. Lett., 70. 3987. 1993.
[24]  DeGiorgi, L., Wachter, P., Gruner, G., Huang, S.M., Wiley, J. and Kaner, R. B., “Optical response of the superconducting state of K3C60 and Rb3C60,” Phys. Rev. Lett., 69. 2987. 1992.
[25]  Tycko, R., Dabbagh, G., Rosseinsky, M. J., Murphy, D.W., Ramirez, A.P. and Fleming, R.M., “Electronic properties of normal and superconducting alkali fullerides probed by 13C nuclear magnetic resonance,” Phys. Rev. Lett., 68. 1912. 1992.
[26]  Koller, D., Martin, M.C., Mihaly, L., Mihaly, G., Oszlanyi, G., Baumgartner, G. and Forro, L., “Energy gap in superconducting fullerides: optical and tunneling studies,” Phys. Rev. Lett., 77. 4082. 1996.
[27]  Zhang, F. C., Ogata, M. and Rice, T.M., “Attractive interaction and superconductivity for K3C60,” Phys. Rev. Lett, 67. 3452. 1991.
[28]  Varma, C.M., Zaanen, J. and Raghavachari, K., “Superconductivity in the fullerenes,” Science, 254. 989. 1991.
[29]  Schluter, M., Lanoo, M., Needels, M., Baratt, G.A. and Tomanek, D., “Electron–phonon coupling and superconductivity in alkali-intercalated C60 solid,” Phys. Rev. Lett., 68. 526. 1992.
[30]  Kresin, V.Z., “Coupling strength in superconducting fullerenes,” Phys. Rev. B., 46, 1833, 1992.
[31]  Zhang, M.L. and Guo, H.Y., “Electron phonon interactions for superconductivity in alkali metal doped fullerenes,” Physica C, 227. 15-21. 1994.
[32]  Ivanov, V. and Maruyama, Y., “Disorder and phonon windows for superconductivity in doped fullerides,” Physica C, 247. 147. 1995.
[33]  Alexandrov, A. S. and Kabanov, V.V., “Theory of superconducting Tc of doped fullerenes,” Phys. Rev. B, 54. 3655. 1996.
[34]  Sparn, G., Thompson, J.D., Whetten, R.L., Huang, S.M., Kaner, R.B., Diederich, F., Gruner, G. and Holczer, K., “Pressure and field dependence of superconductivity in Rb3C60,” Phys. Rev. Lett., 68. 1228. 1992.
[35]  Diederich, J., Gangopadhyay, A.K. and Schilling, J.S., “Pressure dependence of the electronic density of states and Tc in superconducting Rb3C60,” Phys. Rev. B, 54. R9662. 1996.
[36]  Chaban, I.A., “Pressure effect in high-temperature superconductors and fullerides,” J. Supercond: Incorp. Nov. Mag., 15. 179. 2002.
[37]  Satapthy, S., Antropov, V.O., Anderson, O. K., Jepsen, O., Gunnarson, O. and Liechtension, I., “Conduction-band structure of alkali-metal-doped C60,” Phys. Rev. B, 46. 1773. 1992.
[38]  Martins, J.L. and Troullier, N., “Structural and electronic properties of KnC60,” Phys. Rev. B, 46. 1766. 1992.
[39]  Erwin, S.C. and Pickett, W.E., “Theoretical normal-state transport properties of K3C60,” Phys. Rev. B., 46. 14257. 1992.
[40]  Maraduddin, A.A., Montroll, E.W. and Weiss, G.H., Theory of lattice dynamics in the Harmonic approximation, Solid State Physics Suppl-3, Academic press, NewYork, 1963.
[41]  Bogoliubov, N.N., Tolmachev, V.V. and Shirkov, D.D., “A New Method in the theory of Superconductivity,” Consultants Bureau, NewYork, 1959.
[42]  Eliashberg, G.M., “Interactions between electrons and lattice vibrations in a superconductor,” Sov. Phys. JETP, 11. 696. 1960.
[43]  McMillan, W.L., “Transition temperature of strong-coupled superconductors,” Phys. Rev., 167. 331. 1968.
[44]  Novikov, D.L., Gubanov, V.A. and Freeman, A.J., “Electronic structure, electron–phonon interaction and superconductivity in K3C60, Rb3C60 and Cs3C60,” Physica C, 191. 399. 1992.
[45]  Huffman, D.R., “Solid C60,Physics Today, 44. 22. 1991.
[46]  Hebard, A. F., Haddon, R.C., Fleming, R.M. and Kortan, A.R., Appl. Phys. Lett., 59. 2109. 1991.
[47]  Kresin, V.Z., “On the critical temperature for any strength of the electron–phonon coupling,” Phys. Lett. A, 122. 434. 1992.
[48]  Kerkoud, R., Auban Senzier, P., Jerome, D., Lambert, J.M., Zahab, A. and Bernier, P., Europhys. Lett., “13C Knight shift of the doped fullerenes K3C60,” 25. 379. 1994.
[49]  Crespi, V.H. and Cohen, M.L., “Near constancy of the pressure dependence of Tc across families of organic and fullerene superconductors,” Phys. Rev. B, 53. 56. 1996.