Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2021, 9(2), 70-76
DOI: 10.12691/jmpc-9-2-5
Open AccessArticle

Predictive Study of the Influence of the Position of the Sulfonate Substituent on the Chemical Stability of Some Linear Alkylbenzene Sulfonate Isomers

Jean Missa Ehouman1, , Kadjo François Kassi1, Georges Stéphane Dembélé1, Lamoussa Ouattara1, Yafigui Traoré1 and Nahossé Ziao1

1Laboratory of Thermodynamics and Medium Physico-Chemistry, Nangui Abrogoua University, Abidjan, Ivory Coast

Pub. Date: November 10, 2021

Cite this paper:
Jean Missa Ehouman, Kadjo François Kassi, Georges Stéphane Dembélé, Lamoussa Ouattara, Yafigui Traoré and Nahossé Ziao. Predictive Study of the Influence of the Position of the Sulfonate Substituent on the Chemical Stability of Some Linear Alkylbenzene Sulfonate Isomers. Journal of Materials Physics and Chemistry. 2021; 9(2):70-76. doi: 10.12691/jmpc-9-2-5

Abstract

Molecules from industrial formulations are used as palliative solutions in the treatment and reuse of industrial waste, with very encouraging results in developing countries. However, the lack of knowledge of the physicochemical properties of these molecules constitutes a major obstacle in the search for an effective solution. To contribute to the characterization of their physicochemical properties, twenty molecules of linear alkyl benzenesulphonate isomers of C10 and C13 homologs and their parent structures were the subject of this study. The stability and overall reactivity parameters such as the energy gap (.∆E), the chemical potential (μ), the electrophilic index (ω) as well as the molecular dipole moment (μD) are determined by the DFT method with the level B3LYP / 6-311G (d, p) / (water; IEFPCM). The results showed that the meta position of the sulfonate substituent increases overall stability and reactivity and decreases the solubility of the more stable 2C10, 4C10, 2C13 and 3C13 homologues of linear alkylbenzene sulfonates. The parent molecules (2mC10, 4mC10, 2mC13 and 3mC13) obtained more stable and less soluble are in favor of the effects observed in the treatment of industrial waste.

Keywords:
linear alkylbenzene sulfonate metasulfonate position influence chemical stability DFT

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Taiwo, A. M. (2011). Composting as a sustainable waste management technique in developing countries. Journal of Environmental Science and Technology, Vol. 4, pp. 93-102.
 
[2]  Ogbuagu, D.H. and Iwuchukwu, E.I. (2014). Evaluation of the Toxicity of Three Hair Shampoos on the Catfish (Clarias gariepinus) Fingerlings. Applied Ecology and Environmental Sciences, 2, 86-89.
 
[3]  Amiy Dutt Chaturvedi and K.L Tiwari (2013). Effect of Household detergents (Surfactants) Degraded through aquatic fungi. Recent Research in Science and Technology. 2013, 5(5): 12-16.
 
[4]  Mungray, A.K. and Kumar, P. (2009). Fate of Linear Alkylbenzene Sulfonates in the Environment: A Review. International Biodeterioration & Biodegradation, 63, 981-987.
 
[5]  Robert-Peillard, F., Coulomb, A.D.S.B., Doumenq, P., Malleret, L., Asia L. and Boudenne, J.L. (2015). Occurrence and Fate of Selected Surfactants in Seawater at the Outfall of the Marseille Urban Sewerage System. International Journal of Environmental Science and Technology, 12, 1527-1538.
 
[6]  Sakai, N., Shirasaka, J., Matsui, Y., Ramli, M.R., Yoshida, K., Mohd, M.A. and Yoneda, M. (2017). Occurrence, Fate and Environmental Risk of Linear Alkylbenzene Sulfonate in the Langat and Selangor River Basins. Malaysia Chemosphere, 172, 234-241.
 
[7]  Lara-Mart_ın PA, G_omez-Parra A, Sanz JL, Gonz_alez-Mazo E. (2010). Anaerobic degradation pathway of linear alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments. Environ Sci Technol 44:1670-1676.
 
[8]  Hampel M, Mauffret A, Pazdro K, Blasco J. (2012). Anionic surfactant linear alkylbenzene sulfonates (LAS) in sediments from the Gulf of Gda_nsk (southern Baltic Sea, Poland) and its environmental implications. Environ Monit Assess. 184: 6013-6023.
 
[9]  Bertanza, UmbertoGelatti, Francesco Donato, Donatella Feretti (2012). Biodegradability, toxicity and mutagenicity of detergents: Integrated experimental evaluations. Ecotoxicology and Environmental Safety. 84 (2012). 274-281.
 
[10]  MATHEW JACKSON, CHARLES EADSFORTH, DIEDERIK SCHOWANEK, THOMAS DELFOSSE, ANDREW RIDDLE and NIGEL BUDGENk (2016). Comprehensive review of several surfactants in marine environments: fate and ecotoxicity. Environmental Toxicology and Chemistry, Vol. 35, No. 5, pp. 1077-1086, 2016.
 
[11]  Monia Renzi, Andrea Giovani, Silvano E. Focardi (2012). Water Pollution by Surfactants: Fluctuations Due to Tourism Exploitation in a Lagoon Ecosystem. Journal of Environmental Protection, 2012, 3, 1004-1009.
 
[12]  Jean Missa Ehouman, Bernard Ossey Yapo, Agness essoh Jean Eudes Yves Gnagne, Juste-Géraud Boni, Nahossé Ziao. Theoretical Study of the Chemical Stability of Isomers Of Linear Alkylbenzenessulfonates (2018). International Journal of Pharmaceutical Science Invention (IJPSI), vol. 07, no. 04, 2018, pp. 33-39.
 
[13]  Jean Missa Ehouman (2018). Caractérisation physico-chimique des rejets liquides industriels de savonneries et prédiction de la stabilité chimique de quelques surfactants anioniques des produits détergents. Thèse de doctorat, Université Nangui Abrogoua, Abidjan, Cote d’Ivoire. Pp 202.
 
[14]  Gaussian 03, Revision C.01. (2004). M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
 
[15]  C. Costa and B. Silva. (2017). “Analysis and Validation of Dipole Moment Calculations in Chemistry Teaching,” Electron. J. Chem., vol. 9(5), 360-368, 2017.
 
[16]  L. R., Domingo, M., Ríos-gutiérrez, and P., Pérez. (2016). “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” molecules, vol. 21, 784, 2016.
 
[17]  F., Akman. (2017). “Prediction of Chemical Reactivity of Cellulose and Chitosan Based on Density Functional Theory,” Cellul. Chem. Technol., vol. 51, 253-262, 2017.
 
[18]  S., Kaya and C. Kaya (2015). “A New Method for Calculation of Molecular Hardness: A Theoretical Study,” Comput. Theor. Chem., 2015.
 
[19]  L.R., Domingo, P., Pérez (2013). “Global and local reactivity indices for electrophilic/nucleophilic free radicals,” Org. Biomol. Chem., vol. 11, 4350-4358, 2013.