Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2021, 9(2), 56-62
DOI: 10.12691/jmpc-9-2-3
Open AccessArticle

Predictive Modeling of the Anti-Paludial Activity of a Series of Dihydrothiophenone Molecules at the Hartree-Fock (HF) / 6-31G (d, p) Level

Fandia Konate1, Fatogoma Diarrrassouba1, Georges Stéphane Dembele1, 2, , Mamadou Guy-Richard Koné1, 2, Bibata Konaté1, 2, Nanou Tiéba Tuo1 and Nahossé Ziao1, 2

1Laboratoire de Thermodynamique et Physico-Chimie du Milieu, UFR SFA, UNIVERSITE NANGUI ABROGOUA 02 BP 801 Abidjan 02, Côte-d’Ivoire

2Groupe Ivoirien de Recherches en Modélisation des Maladies (GIR2M)

Pub. Date: September 28, 2021

Cite this paper:
Fandia Konate, Fatogoma Diarrrassouba, Georges Stéphane Dembele, Mamadou Guy-Richard Koné, Bibata Konaté, Nanou Tiéba Tuo and Nahossé Ziao. Predictive Modeling of the Anti-Paludial Activity of a Series of Dihydrothiophenone Molecules at the Hartree-Fock (HF) / 6-31G (d, p) Level. Journal of Materials Physics and Chemistry. 2021; 9(2):56-62. doi: 10.12691/jmpc-9-2-3

Abstract

To investigate the relationship between antimalarial activity and molecular structures, a QSAR study is applied to a set of 19 Dihydrothiophenone compounds. This study is performed using the linear multiple regression (MLR) method. Calculations at the HF/6-31G (d, p) level of theory have been performed to obtain structure information. The molecular descriptors used are: carbonyl group vibrational frequency (Ѵ(C=O)), nitrogen-hydrogen vibrational frequency(Ѵ(NH)), entropy of formation (ΔfS) and lowest occupied energy(Elumo). The obtained model gives statistically significant results and shows good predictability: R2 = 0.925, S = 0.230 et F = 22.257. Internal and external validation parameters (Q2loo =0.934et Q2ext=0.748) reveal that the established model performs well in predicting the antimalarial activity of the investigated series of molecules Vibrational frequency of the carbonyl group (Ѵ(C=O)), is the priority descriptor in predicting the antimalarial activity of the investigated series of molecules. The acceptance criteria of Eriksson et al. used for the test set are verified.

Keywords:
antimalarial activity quantum chemistry Dihydrothiophenone QSAR MLR

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  OMS, “Malaria in the world”.
 
[2]  World Health Organization, “World malaria report,” Geneva, 2018.
 
[3]  S. B. Sirima, S. Cousens et P. Druilhe, “Protection against Malaria by MSP3 Candidate Vaccine,” N. Engl. J. Med, vol. 365, n° %111, p. 1062-1064, Sept 2011.
 
[4]  M. Xu, “Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: Discovery and optimization of dihydrothiophénone derivatives,” J. Med. Chem, vol. 56, n° %120, p. 7911-7924, 2013.
 
[5]  D. e. a. Xu, “Discovery and structure activity relationships of ent Kaurene diterpenoids as potent and selective 11b-HSD1 inhibitors: Potential impact in diabetes,” European Journal of Medicinal Chemistry, p. 403-414, 2013.
 
[6]  V. Labet, “Theoretical study of some Aspects of the Reactivity of DNA Bases-Definition of new theoretical tools for the study of chemical reactivity,” Chemical Sciences, 2009.
 
[7]  M. Frisch, G. Trucks, H. Schlegel et G. Scuseria, “Revision A.02,” chez Gaussian 09, Wallingford CT, Gaussian, Inc., 2009.
 
[8]  M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip et R. A. e. S. N. McDonald, “JANAF Thermochemical Tables,” J. Phys. Ref, vol. 14, n° %111, 1985.
 
[9]  H. P. Schultz, “Topoligical organic chemistry: Graph theory and topological indices of alkanes,” Journal of chemical Information and Modeling, vol. 29, p. 227-228, 1989.
 
[10]  M. Karelson, “Molecular descriptors in QSAR/QSPR,” wiley.
 
[11]  S. Chatterjee et A. S. Hadi, “fourth Edition, a John Wiley and Sons,” Hoboken, 2006.
 
[12]  G. W. Snedecor et W. G. Cochran, Methods Statistical, India: Oxford and IBH: New Delhi, 1967, p. 381.
 
[13]  N. J.-B. Kangah, M. G.-R. Koné, C. G. Kodjo, B. R. N’guessan, S. A. Kablan, Yéo et N. Ziao, “Antibacterial Activity of Schiff Bases Derived from Ortho Diaminocyclohexane, Meta-Phenylenediamine and 1,6-Diaminohexane: Qsar Study with Quantum Descriptors,” International Journal of Pharmaceutical Science Invention, vol. 6, n° %113, pp. 38-43, 2017.
 
[14]  E. X. Esposito, A. J. Hopfinger et J. D. Madura, “Methods for Applying the Quantitative Structure-Activity Relationship Paradigm,” Methods in Molecular Biology, vol. 275, pp. 131-213, 2004.
 
[15]  L. Eriksson, J. Jaworska, A. Worth, M. D. Cronin, R. M. Mc Dowell et P. Gramatica, “Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs,” Environmental Health Perspectives, vol. 111, n° %110, pp. 1361-1375, 2003.
 
[16]  J. N’dri, M.-G. Koné, C. KODJO, S. AFFI, A. KABLAN, O. OUATTARA et D. Soro, “Quantitative Activity Structure Relationship (QSAR) of a Series of Azet idinones Derived from Dap-sone by the Method of Density Functional Theory (DFT),” IRA International Journal of Applied Sciences (ISSN 2455-4499), vol. 8, n° %12, pp. 55-62, 2017.
 
[17]  A. Golbraikh et A. Tropsha, “Beware of qsar,” J. Mol. Graph. Model., vol. 20, p. 269, 2002.
 
[18]  A. Tropsha, P. Gramatica et V. and Gombar, “The importance of being earnest, validation is the absolute essential for successful application and interpretation of QSPR models,” QSAR Comb. Sci. , vol. 22, p. 69, 2003.
 
[19]  O. Ouattara, T. S. Affi, M. G.-R. Koné, K. Bamba et N. Ziao, “Can Empirical Descriptors Reliably Predict Molecular Lipophilicity ? A QSPR Study Investigation,” Int. Journal of Engineering Research and Application, vol. 7, n° %115, pp. 50-56, 2017.
 
[20]  R. Guha, D. T. Stanton et P. C. Jurs, “Interpreting Computational Neural Network Quantitative Structure-Activity Relationship Models: A Details Interpretation of the weights and Biases,” Journal of chemical Information and Modeling, vol. 45, n° %14, p. 1109-1121, 2005.
 
[21]  D. Cherquaoui, M. Essefer, D. Villemin, J. M. Cence, M. Chastrette et D. Zakarya, “Etude de la relation Quantitative structure-activité inhibitrice des enzymes hydrolytiques:cas de alpha-glucosidase,” New .J.Chem, vol. 22, p. 843-869, 1998.
 
[22]  A. Vessereau, Statistical methods in biology and agronomy, vol. 538, Paris: Lavoisier (Tec & Doc)., 1988.
 
[23]  K. Roy, “A Primer on QSAR/QSPR Modeling, Chapter 2 Statistical Methods in QSAR/QSPR,” Springer Briefs in Molecular Science, pp. 37-59, 2015.
 
[24]  S. Chtita, M. Larif, M. Ghamali, M. Bouachrine et T. Lakhlifi, “Quantitative structure–activity relationship studies of dibenzo[a,d]cycloalkenimine derivatives for non-competitive antagonists of N-methyl-D-aspartate based on density functional theory with electronic and topological descriptors,” Journal of Taibah University for Science , vol. 9, pp. 143-154, 2015.