Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2021, 9(2), 56-62
DOI: 10.12691/jmpc-9-2-3
Open AccessArticle

Predictive Modeling of the Anti-Paludial Activity of a Series of Dihydrothiophenone Molecules at the Hartree-Fock (HF) / 6-31G (d, p) Level

Fandia Konate1, Fatogoma Diarrrassouba1, Georges Stéphane Dembele1, 2, , Mamadou Guy-Richard Koné1, 2, Bibata Konaté1, 2, Nanou Tiéba Tuo1 and Nahossé Ziao1, 2

1Laboratoire de Thermodynamique et Physico-Chimie du Milieu, UFR SFA, UNIVERSITE NANGUI ABROGOUA 02 BP 801 Abidjan 02, Côte-d’Ivoire

2Groupe Ivoirien de Recherches en Modélisation des Maladies (GIR2M)

Pub. Date: September 28, 2021

Cite this paper:
Fandia Konate, Fatogoma Diarrrassouba, Georges Stéphane Dembele, Mamadou Guy-Richard Koné, Bibata Konaté, Nanou Tiéba Tuo and Nahossé Ziao. Predictive Modeling of the Anti-Paludial Activity of a Series of Dihydrothiophenone Molecules at the Hartree-Fock (HF) / 6-31G (d, p) Level. Journal of Materials Physics and Chemistry. 2021; 9(2):56-62. doi: 10.12691/jmpc-9-2-3


To investigate the relationship between antimalarial activity and molecular structures, a QSAR study is applied to a set of 19 Dihydrothiophenone compounds. This study is performed using the linear multiple regression (MLR) method. Calculations at the HF/6-31G (d, p) level of theory have been performed to obtain structure information. The molecular descriptors used are: carbonyl group vibrational frequency (Ѵ(C=O)), nitrogen-hydrogen vibrational frequency(Ѵ(NH)), entropy of formation (ΔfS) and lowest occupied energy(Elumo). The obtained model gives statistically significant results and shows good predictability: R2 = 0.925, S = 0.230 et F = 22.257. Internal and external validation parameters (Q2loo =0.934et Q2ext=0.748) reveal that the established model performs well in predicting the antimalarial activity of the investigated series of molecules Vibrational frequency of the carbonyl group (Ѵ(C=O)), is the priority descriptor in predicting the antimalarial activity of the investigated series of molecules. The acceptance criteria of Eriksson et al. used for the test set are verified.

antimalarial activity quantum chemistry Dihydrothiophenone QSAR MLR

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  OMS, “Malaria in the world”.
[2]  World Health Organization, “World malaria report,” Geneva, 2018.
[3]  S. B. Sirima, S. Cousens et P. Druilhe, “Protection against Malaria by MSP3 Candidate Vaccine,” N. Engl. J. Med, vol. 365, n° %111, p. 1062-1064, Sept 2011.
[4]  M. Xu, “Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: Discovery and optimization of dihydrothiophénone derivatives,” J. Med. Chem, vol. 56, n° %120, p. 7911-7924, 2013.
[5]  D. e. a. Xu, “Discovery and structure activity relationships of ent Kaurene diterpenoids as potent and selective 11b-HSD1 inhibitors: Potential impact in diabetes,” European Journal of Medicinal Chemistry, p. 403-414, 2013.
[6]  V. Labet, “Theoretical study of some Aspects of the Reactivity of DNA Bases-Definition of new theoretical tools for the study of chemical reactivity,” Chemical Sciences, 2009.
[7]  M. Frisch, G. Trucks, H. Schlegel et G. Scuseria, “Revision A.02,” chez Gaussian 09, Wallingford CT, Gaussian, Inc., 2009.
[8]  M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip et R. A. e. S. N. McDonald, “JANAF Thermochemical Tables,” J. Phys. Ref, vol. 14, n° %111, 1985.
[9]  H. P. Schultz, “Topoligical organic chemistry: Graph theory and topological indices of alkanes,” Journal of chemical Information and Modeling, vol. 29, p. 227-228, 1989.
[10]  M. Karelson, “Molecular descriptors in QSAR/QSPR,” wiley.
[11]  S. Chatterjee et A. S. Hadi, “fourth Edition, a John Wiley and Sons,” Hoboken, 2006.
[12]  G. W. Snedecor et W. G. Cochran, Methods Statistical, India: Oxford and IBH: New Delhi, 1967, p. 381.
[13]  N. J.-B. Kangah, M. G.-R. Koné, C. G. Kodjo, B. R. N’guessan, S. A. Kablan, Yéo et N. Ziao, “Antibacterial Activity of Schiff Bases Derived from Ortho Diaminocyclohexane, Meta-Phenylenediamine and 1,6-Diaminohexane: Qsar Study with Quantum Descriptors,” International Journal of Pharmaceutical Science Invention, vol. 6, n° %113, pp. 38-43, 2017.
[14]  E. X. Esposito, A. J. Hopfinger et J. D. Madura, “Methods for Applying the Quantitative Structure-Activity Relationship Paradigm,” Methods in Molecular Biology, vol. 275, pp. 131-213, 2004.
[15]  L. Eriksson, J. Jaworska, A. Worth, M. D. Cronin, R. M. Mc Dowell et P. Gramatica, “Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs,” Environmental Health Perspectives, vol. 111, n° %110, pp. 1361-1375, 2003.
[16]  J. N’dri, M.-G. Koné, C. KODJO, S. AFFI, A. KABLAN, O. OUATTARA et D. Soro, “Quantitative Activity Structure Relationship (QSAR) of a Series of Azet idinones Derived from Dap-sone by the Method of Density Functional Theory (DFT),” IRA International Journal of Applied Sciences (ISSN 2455-4499), vol. 8, n° %12, pp. 55-62, 2017.
[17]  A. Golbraikh et A. Tropsha, “Beware of qsar,” J. Mol. Graph. Model., vol. 20, p. 269, 2002.
[18]  A. Tropsha, P. Gramatica et V. and Gombar, “The importance of being earnest, validation is the absolute essential for successful application and interpretation of QSPR models,” QSAR Comb. Sci. , vol. 22, p. 69, 2003.
[19]  O. Ouattara, T. S. Affi, M. G.-R. Koné, K. Bamba et N. Ziao, “Can Empirical Descriptors Reliably Predict Molecular Lipophilicity ? A QSPR Study Investigation,” Int. Journal of Engineering Research and Application, vol. 7, n° %115, pp. 50-56, 2017.
[20]  R. Guha, D. T. Stanton et P. C. Jurs, “Interpreting Computational Neural Network Quantitative Structure-Activity Relationship Models: A Details Interpretation of the weights and Biases,” Journal of chemical Information and Modeling, vol. 45, n° %14, p. 1109-1121, 2005.
[21]  D. Cherquaoui, M. Essefer, D. Villemin, J. M. Cence, M. Chastrette et D. Zakarya, “Etude de la relation Quantitative structure-activité inhibitrice des enzymes hydrolytiques:cas de alpha-glucosidase,” New .J.Chem, vol. 22, p. 843-869, 1998.
[22]  A. Vessereau, Statistical methods in biology and agronomy, vol. 538, Paris: Lavoisier (Tec & Doc)., 1988.
[23]  K. Roy, “A Primer on QSAR/QSPR Modeling, Chapter 2 Statistical Methods in QSAR/QSPR,” Springer Briefs in Molecular Science, pp. 37-59, 2015.
[24]  S. Chtita, M. Larif, M. Ghamali, M. Bouachrine et T. Lakhlifi, “Quantitative structure–activity relationship studies of dibenzo[a,d]cycloalkenimine derivatives for non-competitive antagonists of N-methyl-D-aspartate based on density functional theory with electronic and topological descriptors,” Journal of Taibah University for Science , vol. 9, pp. 143-154, 2015.