Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Journal of Materials Physics and Chemistry. 2021, 9(1), 16-19
DOI: 10.12691/jmpc-9-1-3
Open AccessArticle

An Investigation of SHG Response from the CNT/Peptide Interface as a Function of Variant Peptide Concentrations and Tunable Wavelengths by Using a Monochromator

Md. Ehasanul Haque1, , Munaly Akter2, Md. Abdus Sattar2, Md. Asadul Hoque2 and Md. Abdul Matin2

1Department of Industrial & Production Engineering, American International University-Bangladesh (AIUB), Dhaka-1229, Bangladesh

2Department of Materials Science and Engineering, Rajshahi University, Rajshahi-6300, Bangladesh

Pub. Date: August 04, 2021

Cite this paper:
Md. Ehasanul Haque, Munaly Akter, Md. Abdus Sattar, Md. Asadul Hoque and Md. Abdul Matin. An Investigation of SHG Response from the CNT/Peptide Interface as a Function of Variant Peptide Concentrations and Tunable Wavelengths by Using a Monochromator. Journal of Materials Physics and Chemistry. 2021; 9(1):16-19. doi: 10.12691/jmpc-9-1-3


The carbon nanotubes (CNT) was fabricated on the Si/SiO2/Co substrate by chemical vapor deposition (CVD) method. After that, we dropped variant concentrations of peptide molecules on the CNT surface and measured the SHG intensity from the CNT/PEP interface. We found that the SHG intensity was maximum for all concentrations of peptide molecules at 532 nm when we tuned the wavelength manually by using monochromator. At the fixed SHG wavelength, the intensity was increased with the increase of peptide concentrations. This is because of the availability of the different types of C-bonds may produce chiral structure. This chirality behavior could be the reason for the generation of SHG signal with the increase of peptides concentrations on the CNT surface.

carbon nanotubes peptides second harmonic generation chirality interface

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  S. lijima, Helical micortubes of graphitic carbon, Nature, 354, 56-58, (1991).
[2]  P. Avouris, Z. H. Chen & V. Perebeinos, Carbon-based electronics, Nature Nanotechnology, 2(10), 605-615, (2007).
[3]  M. C. Hersam, Progress towards monodisperse single-walled carbon nanotubes, Nature Nanotech., 3, 387-394, (2008).
[4]  Y. R. Shen, Surface properties probed by second-harmonic and sum-frequency generation, Nature, 337, 519-525, (1989).
[5]  S. Okawara, M. Kudo, M. Miyamori, S. Ohno, Y. Shimazu, M. Tanaka & T. Suzuki, Japanese Second-harmonic generation from supported carbon nanotube films grown by chemical vapor deposition on fused silica, Journal of Applied Physics, 58, 032006, (2019).
[6]  H. M. Su, J. T. Ye & K. S. Wong, Resonant second-harmonic generation in monosized and aligned single-walled carbon nanotubes, Phys. Rev. B, 77, 125428, (2008).
[7]  S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, S. Botti, R. Ciardi, L. D. Deominicis, L. Asilyan, A. A. Podshivalov, D. A. Sidorov-Biryukov, R. Fantoni & A. M. Zheltikov, Femtosecond optical harmonic generation as a non-linear spectroscopic probe for carbon nanotubes, J. Raman Spectroscopy, 34, 1018-1024, (2003).
[8]  D. A. Akimov, M. V. Alfimov, S. O. Konorov, A. A. Ivanov, S. Botti, A. A. Podshivalov, R. Ciardi, L. D. Deominicis, L. Asilyan, R. Fantoni & A. M. Zheltikov, Generation of the second and third harmonics of femtosecond Cr: Forsterite-laser pulses by single-wall carbon nanotubes, Laser Physics, 13(10), 1279-1283, (2003).
[9]  S. Botti, R. Ciardi, L. D. Dominicis, L. Asilyan, R. Fantoni & T. Marolo, DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst, Chemical Physics Letter, 378, 117-121, (2003).
[10]  L. D. Dominicis, S. Botti, L. S. Asilyan, R. Ciardi, R. Fantoni, M. L. Terranova, A. Fiori, S. Orlanducci & R. Appolloni, Second-and third-harmonic generation in single-walled carbon nanotubes at nanosecond time scale, Applied Physics. Letters, 85, 1418-1420, (2004).
[11]  L. D. Dominicis, R. Fantoni, S. Botti, R. Ciardi, L. Asilyan, A. Fiori & S. Orlanducci, Analysis of the chiral composition of a carbon nanotube surface by means of second harmonic generation, J. Raman Spectroscopy, 36, 165-170, (2005).
[12]  S. Fujii, T. Morita, J. Umemura & S. Kimura, Cyclic peptides as scaffold for oriented functional groups on surface, Thin Solid Films, 503, 224-229, (2006).
[13]  H. Nakayama, T. Manaka, M. Iwamoto & S. Kimura, Vertical orientation with a narrow distribution of helical peptides immobilized on a quartz substrate by stereocomplex formation, Soft Matter, 8, 3387-3392, (2012).
[14]  S. Tokutake, Y. Imanishi & M. Sisido, Efficiency of Second Harmonic Generation from Amino Acids, Peptides, and Polypeptides Carrying Polarizable Aromatic Groups, Mol. Cryst. Liq. Cryst., 170, 245-257, (1989).
[15]  M. Akter, M. Parvez, E. Haque, H. Ferdous & A. Matin, Fabrication of Carbon Nanotube (CNT) by Chemical Vapor Deposition and Investigate the Second Harmonic Response from CNT/Peptide and Si/SiO2/Peptide Interfaces. International Journal of Science and Engineering Investigations (IJSEI), 9(101), 39-45, (2020).
[16]  M. Akter, E. Haque, M. Parvez & A. Matin, “Synthesis of Carbon Nanotube by Chemical Vapor Deposition (CVD) Method.” Scientific Research Journal (Scirj), 8(6), 30-33, (2020).