Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2014, 2(1), 9-14
DOI: 10.12691/jmpc-2-1-2
Open AccessArticle

Simulation of Single Crystalline CdZnTe Solidification Process

A.M. Martínez1, , M.R. Rosenberger2, A.B. Trigubó3, 4, R.L. D´Elía4 and E.A. Heredia4

1CEDIT-CeDITec, Félix de Azara 1890 5º piso, Posadas, Pcia. de Misiones, Argentina

2IMAM-CONICET-UNaM, FEQYN, Félix de Azara 1552, Posadas, Pcia. de Misiones, Argentina

3FRBA-UTN, Medrano 951, CABA, Argentina

4UNIDEF- MINDEF- CITEDEF, Juan Bautista de La Salle 4397, V. Martelli, Pcia de Bs.As., Argentina

Pub. Date: December 31, 2013

Cite this paper:
A.M. Martínez, M.R. Rosenberger, A.B. Trigubó, R.L. D´Elía and E.A. Heredia. Simulation of Single Crystalline CdZnTe Solidification Process. Journal of Materials Physics and Chemistry. 2014; 2(1):9-14. doi: 10.12691/jmpc-2-1-2

Abstract

Single crystals of Cd1-xZnxTe (0 ≤ x ≤ 0.1) (CZT/CdZnTe) are used in manufacture of gamma and X-ray detectors and as substrates for epitaxial growth of HgCdTe. Computer simulation for the solidification of CZT was performed using finite elements. The simulation results indicate that a lower translation speed of the quartz ampoule within the Bridgman furnace determines a lower concavity of the liquid interface which assures a good crystalline quality. When the rate is 3.32 mm/h the concavity is 58% greater than for a speed of 0.50 mm/h. It was experimentally found that when growing at low speed, 1.66 mm/h, the process is more stable and improves the crystalline quality due that only two grains were generated in CZT ingots. Meanwhile a faster growth speed- 3.32 mm/h- generates a large amount of grains in the CZT ingot.

Keywords:
CdZnTe Bridgman method numerical simulation finite element method single crystal growth II-VI Semiconductors

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Bridgman, P. W., Proc. Am. Acad. Arts. Sci., 60. 305-309. 1925
 
[2]  Stockbarger, D. C., Rev. Sci. Instr., 7. 133-137. 1936.
 
[3]  A B. Trigubó, I. Nöllmann, J.R. Casanova, “Bridgman Grown Hg1-xCdxTe: Crystalline Quality Assessment by X-Ray Topography”, J. Mater. Sci., 27. 641-645. 1992.
 
[4]  Diéguez, E., “Growth of Cd0.9Zn0.1Te Bulk Crystals”, Comprehensive Semiconductor Science and Technology, 3. 170-201. 2011.
 
[5]  Saucedo Silva, E., Crecimiento y caracterización de monocristales en volumen de CdTe dopados con Bi; Tesis de doctorado, Univ. Autónoma de Madrid; Departamento de Física de Materiales, Facultad de Ciencias; Madrid. 2007.
 
[6]  Rudolph, P., Neubert, M., Muhlberg, M., “Defects in CdTe bridgman monocrystals caused by nonstoichiometric growth conditions”, J. Cryst. Growth, 128. 582-587. 1993.
 
[7]  Zienkiewicz, O. C., The Finite Element Method, Third Edition, McGraw-Hill Book Company (UK) Limited, London (con versión española de E. Oflate, Editorial Reverte, S. A. Barcelona). 1981.
 
[8]  Parfeniuk, C.L., Mathematical Modelling of the vertical Bridgman growth of cadmium telluride, Doctoral Thesis, University of British Columbia, Vancouver, 1990, p. 65.
 
[9]  Satio H., Scriven, L.E., “Study of Coating Flow by the Finite Element Method”, J. Comp. Phys., 42. 53-76. 1981.
 
[10]  Parfeniuk, C., Weinberg, F., Samarasekera, I. V., Schvezov, C., Li, L., “Measured Critical Resolved shear stress and calculated temperature and stress fields during growth of CdZnTe”, Journal of Crystal Growth, 119. 261-270. 1992.
 
[11]  Rudolph, P., “Fundamental studies on Bridgman growth of CdTe”, Prog. Cryst. Growth and Charact., 29. 275-381. 1994.
 
[12]  A. Katty, P. Dusserre, R. Triboulet, T. Duffar, “Surface tension of II–VI compounds and contact angle on glassy carbon”, Journal of Crystal Growth, 118 (3-4). 470. 1992.
 
[13]  R. Balasubramanian and W. R. Wilcox, “Surface tension and contact angle of molten cadmium telluride”, International Journal of Thermophysics, 11, N° 1. 1990.
 
[14]  Cerny, R., Kalbac, A., Prikryl, P., “Computational modeling of CdZnTe crystal growth from the melt”, Computacional Materials Science, 17. 34-60. 2000.
 
[15]  Carcelen, V., Vijayan, N., Rodríguez-Fernández, J., “Influence of thermal environments on the growth of bulk cadmium zinc telluride (CZT) single crystals”, Journal of Crystal Growth, 311(5), 1264-1267. 2009.
 
[16]  Chen, H., Awadalla, S.A., Mackenzie, J.,” Characterization of traveling heater method (THM) grown Cd0.9Zn0.1Te crystals”, IEEE Transactions on Nuclear Science, 54(4). 811-816. 2007.
 
[17]  Martínez Tomás, C., Muñoz, V., “CdTe crystal growth process by the Bridgman method: Numerical simulation”, Journal of Crystal Growth, 222. 435-451. 2001.
 
[18]  Shackelford, J. F., Alexander, W., The CRC Materials Science and Engineering Handbook, 3rd ed., CRC Press, Boca Raton, F.L. 2001.
 
[19]  Liu, Y., Dost, S., Lent, B., Redden, R. F., “A three-dimensional numerical simulation model for the growth of CdTe single crystals by the travelling heater method under magnetic field”, Journal of Crystal Growth, 254. 285-297. 2003.
 
[20]  Ouyang, H., Shyy, W., “Numerical simulation of CdTe vertical Bridgman growth”, Journal of Crystal Growth, 173. 352-366. 1997.
 
[21]  Kingery, W.D., Bowen, H.K., Uhlmann, D.R., Introduction to Ceramics, 2nd ed., Jhon Wiley & Sons, Inc., NY. 1976.
 
[22]  Rudolph, P., Muhlberg, M., “Basic problems of vertical Bridgman growth of CdTe”, Mater. Sci. Eng. B, 16. 8-16. 1993.
 
[23]  Krisanne Edwards, Derby, J. J., “Understanding horizontal Bridgman shelf growth of cadmium telluride and cadmium zinc telluride. I. Heat and momentum transfer”, Journal of Crystal Growth, 179. 120-132. 1997.
 
[24]  Sen, S., Konkel, W. H., Tighe, S. J., Bland, L. G., Sharma, S. R., Taylor, R. E., “Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-Bridgman process” Journal of Crystal Growth, 86. 111-117. 1988.
 
[25]  Zanio, K., Semiconductors and Semimetals, Vol. 13, Cadmium Telluride, Academic Press. 1978.
 
[26]  Wagman, D.D., et al., Selected Values of Thermodynamic Properties, National Bureau of Standars Series 270, U.S. Department of Commerce, Washington. 1968-1971.
 
[27]  Toloukian, Y.S., Thermophysical Properties of Matter, The TPRC data series, Series Editor, IFI/Plenum, New York. 1970.
 
[28]  Martínez, A.M., Rosenberger, M.R Trigubó, A.B., Schvezov, C.E., Walsöe de Reca, N.E., “Simulación por elementos finitos de la obtencion del CdZnTe monocristalino utilizando el método de Bridgman”, in 2do Encuentro de Jóvenes Investigadores en Ciencia y Tecnología de Materiales, del 16 al 17 de Octubre de 2008, Posadas – Prov. de Misiones.
 
[29]  Cengel, Y.A., Heat Transfer: A Practical Approach, Mcgraw-Hill (Tx); 2nd edition. 2002.
 
[30]  Martínez, A.M., Trigubó, A.B., D´Elía, R., Heredia, E., Ramelli, R., González, R., Gilabert, U. y Aza, F. “Estudio de la calidad cristalina, la concentración de precipitados/inclusiones de telurio y la homogeneidad en composición del Cd1-xZnxTe (0≤ x ≤0,1) crecido por el método de Bridgman”, in 11º Congreso Binacional de Metalurgia y Materiales SAM / CONAMET 2011, del 18 al 21 de Octubre de 2011 - Rosario, Argentina.
 
[31]  Martínez, A. M., Modelización Numérica, Síntesis Monocristalina y Estudio de Propiedades del Cd1-yZnyTe (0  y  0,1), Material Sensible a las Radiaciones X y , Tesis de Doctorado, UNSAM-CNEA-CAC (Univ. Nac. de Gral. San Martín - Comisión Nac. de Energía Atómica), Bs. As. 2012.