Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2014, 2(1), 1-8
DOI: 10.12691/jmpc-2-1-1
Open AccessArticle

Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste

Anuj Kumar1, Yuvraj Singh Negi1, , Veena Choudhary2 and Nishi Kant Bhardwaj3

1Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, India

2Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, India

3Thapar Centre for Industrial Research and Development, Yamuna Nagar, Haryana, India

Pub. Date: December 30, 2013

Cite this paper:
Anuj Kumar, Yuvraj Singh Negi, Veena Choudhary and Nishi Kant Bhardwaj. Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry. 2014; 2(1):1-8. doi: 10.12691/jmpc-2-1-1

Abstract

Sugarcane bagasse (SCB) is abundantly available agro-waste world-wide and has been used in different applications and its utilization as a source of cellulose attracting attention in the area of biomedical and other applications. The present study investigates the surface morphology, topography, structural, elemental and thermal properties of cellulose nanocrystals (CNCs) extracted by acid-hydrolysis from sugarcane bagasse as agro-waste. Morphological (field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM)), structural (fourier transformed infrared (FTIR) spectroscopy, X-ray diffraction (XRD)), elemental analysis (energy dispersive x-ray diffraction (EDX)) and thermal characterization (TG-DTG-DTA) of CNCs was carried out. Morphological characterization clearly showed the formation of rod-shaped CNCs having size in the range of 250-480 nm (length) and 20-60 nm (diameter). Elemental analysis (EDX) showed 0.72 wt% sulfur impurity in CNCs along with other main components. X-ray diffraction and thermal analysis revealed that CNCs have higher crystallinity (72.5%) than that of chemically purified cellulose (CPC) (63.5%) but have lower thermal stability. These lab extracted CNCs supposed to have a high potential as nano-reinforcement into bionanocomposite for biomedical and other value-added products in industrial applications.

Keywords:
sugarcane bagasse cellulose nanocrystals acid-hydrolysis nanotechnology agro-waste

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 8

References:

[1]  Faruka, O., Bledzki, A. K., Fink, H. P., and Sain, M., “Biocomposites reinforced with natural fibers: 2000-2010”. Prog. Polym. Sci., 37, 1552-1596, 2012.
 
[2]  Vartiainen, J., Pohler, T., Sirola, K., Pylkkanen, L., Alenius, H., Hokkinen, J., Tapper, U., Lahtinen, P., Kapanen, A., Putkisto, K., Hiekkataipale, P., Eronen, P., Ruokolainen, J., and Laukkanen, A., “Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose”, Cellulose, 18, 775-786, 2011.
 
[3]  Lin, N., Huang, J., and Dufresne, A., “Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review”, Nanoscale, 4, 3274-3294, 2012.
 
[4]  Lavoine, N., Desloges, I., Dufresne, A., and J. Bras, J., “Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review”, Carbohydr. Polym., 90:735-764, 2012.
 
[5]  Habibi, Y., Lucia, L.A., and O. J. Rojas, O. J., “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications”, Chem. Rev., 110, 3479-3500, 2010.
 
[6]  Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., “Cellulose nanomaterials review: structure, properties and nanocomposites”, Chem. Soc. Rev., 40, 3941-3994, 2011.
 
[7]  Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., and Dorris, A., “Nanocelluloses: A New Family of Nature-Based Materials”, Angew. Chem. Int. Ed., 50, 5438-5466, 2011.
 
[8]  Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z., Fan, S., Jason, T., Bloking, J. T., McGehee, M.D., Wågberg, L., and Cui. Y., “Transparent and conductive paper from nanocellulose fibers”, Energy Environ. Sci., 6, 513-518, 2013.
 
[9]  Siro, I., and D. Plackett, D., “Microfibrillated cellulose and new nanocomposite materials: a review”, Cellulose, 17, 459-494, 2010.
 
[10]  Podsiadlo, P., Choi, S., Shim, B., Lee, J., Cuddihy, M., and Kotov, N. A., “Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals”, Biomacromolecules, 6, 2914-2918, 2005.
 
[11]  Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J.M., and Torre, L., “Extraction of Cellulose Nanocrystals from Phormium tenax Fibres”, J. Polym. Environ, 21, 319-328, 2013.
 
[12]  Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., and Dufresne, A., “Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers”, Cellulose, 18, 57-65, 2010.
 
[13]  Dong, H., Snyder, J. F., Tran, D.T., and Leadore, J. L., “Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles”, Carbohydr. Polym, 95, 760-767, 2013.
 
[14]  Zhou, Y., Fuentes-Hernandez, C., Khan, T. M., Liu, J.C., Hsu, J., Shim, J. W., Dindar, A., Youngblood, J.P., Moon, R.J., and Kippelen, B., “Recyclable organic solar cells on cellulose nanocrystal substrates”, Sci. Rep., 3, 1-5, 2013.
 
[15]  Azizi Samir, M. A. S., Alloin, F., and Dufresne, A., “Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field”, Biomacromolecules, 6, 612-626, 2005.
 
[16]  Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J. R., Rowan, S. J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A. S., Bismarck, A., Berglund, L.A., and Peijs, T., “Review: Current international research into cellulose nanofibres and nanocomposites”, J. Mater. Sci., 45, 1-33, 2010.
 
[17]  Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A., and Kargarzadeh, H., “Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius)”, Carbohydr. Polym, 88, 772- 779, 2012.
 
[18]  Johar, N., Ahmada, I., and Dufresne, A., “Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk”, Indus. Crop. Prod., 37, 93-99, 2012.
 
[19]  Kumar, A., Negi, Y.S., Bhardwaj, N.K., and Choudhary, V., “Synthesis and characterization of methylcellulose/PVA based porous composite”, Carbohydr. Polym, 88, 1364-1372, 2012.
 
[20]  Neto, W. P. F., Silvério, H. A., Dantas, N. O., and Pasquini, D., “Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls”, Indus. Crop. Prod., 42, 480-488, 2013.
 
[21]  Silvérioa, H. A., Neto, W. P. F., Dantas, N. O., and Pasquini, D., “Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites”, Indus. Crop. Prod., 44, 427-436, 2013.
 
[22]  Pasquini, D., Teixeira, E. D. M., Curvelo, A. A. D.S., Belgacem, M. N., and Dufresne, A., “Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber”, Indus. Crop. Prod., 32, 486-490, 2010.
 
[23]  Zuluaga, R., Putaux, J. L., Cruz, J., Velez, J., Mondragon, I., and Ganan, P., “Cellulose microfibrils from banana rachis: effect of alkaline treatment on structural and morphological features”, Carbohydr. Polym, 76, 51-59, 2009.
 
[24]  Wong, S., and Shanks, R., Biocomposites of natural fibers and poly (3-hydroxybutyrate) and copolymers: Improved mechanical properties through compatibilization at the interface. In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources, New Jersey: John Wiley & Sons, Inc. 2009 303-347.
 
[25]  Beck-Candanedo, S., Roman, M., and Gray, D. G., “Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions”, Biomacromolecules, 6, 1048-1054, 2005.
 
[26]  Pandey, J. K., Ahn, S. H., Lee, C. S., Mohanty, A. K., and Misra, M., “Recent advances in the application of natural fiber based composites”, Macromol. Mater. Eng., 295, 975-989, 2010.
 
[27]  Deepa, B., Abraham, E., Cherian, B. M., Bismarck, A., Blaker, J. J., Pothan, L.A., Leao, A. L., de Souza, S.F., and Kottaisamy, M., “Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion”, Biores. Technol., 102, 1988-1997, 2011.
 
[28]  Peng, B. L., Dhar, N., Liu, H.L., and Tam, K. C., “Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective”, Can. J. Chem. Eng., 89, 1191-1206, 2011.
 
[29]  Li, J., Wei, X., Wang, Q., Chen, J., Chang, G., Kong, L., Su, J., and Liu, Y., “Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization”, Carbohydr. Polym, 90, 1609-1613, 2012.
 
[30]  Mandal, A., and Chakrabarty, D., “Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization”, Carbohydr. Polym, 86, 1291-1299, 2011.
 
[31]  Teixeira, E.de M., Bondancia, T.J., Teodoro, K. B. R., Correa, A. C., Marconcini, J. M., and Mattoso, L. H. C., “Sugarcane bagasse whiskers: Extraction and characterizations”, Indus. Crop. Prod., 33, 63-66, 2011.
 
[32]  Bhattacharya, D., Germinario, L. T. Winter, W. T., “Isolation, preparation and characterization of cellulose microfibers obtained from bagasse”, Carbohydr. Polym, 73, 371-377, 2008.
 
[33]  Kumar, A., Negi, Y. S., Bhardwaj, N. K., and Choudhary, V., “Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite”, Adv. Mater. Lett, 4, 626-631, 2013.
 
[34]  Maddahy, N. K., Ramezani, O., and Kermanian, H., Production of Nanocrystalline Cellulose from Sugarcane Bagasse, Proceedings of the 4th International Conference on Nanostructures (ICNS4) 12-14 March, Kish Island, I. R. Iran, 2012.
 
[35]  Abe, K., Iwamoto, S., and Yano, H., “Obtaining cellulose nanofibres with a uniform width of 15 nm from wood”, Biomacromolecules, 8, 3276-3278, 2007.
 
[36]  Abe, K., and Yano, H., “Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw, and potato tuber”, Cellulose 16, 1017-1023, 2009.
 
[37]  Chen, W. S., Yu, H. P., Liu, Y. X., Chen, P., Zhang, M. X., and Hai, Y. F., “Individualization of cellulose nanofibres from wood using high-intensity ultrasonication combined with chemical pretreatments”, Carbohydr. Polym, 83, 1804-1811, 2011.
 
[38]  Bondeson, D., Mathew, A., and Oksman, K., “Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis”, Cellulose, 13, 171 -180, 2006.
 
[39]  Viera, R. G. P., Filho, G. R., de Assuncao, R. M. N., Meireles, C. S., Vieira, J. G., and de Oliveira, G. S., “Synthesis and characterization of methylcellulose from sugarcane bagasse cellulose”, Carbohydr. Polym, 67, 182-189, 2007.
 
[40]  Troedec, M., Sedan, D., Peyratout, C., Bonnet, J., Smith, A., Guinebretiere, R., Gloaguen, V., and Krausz, P., “Influence of various chemical treatments on the composition and structure of hemp fibers”, Composites Part A-Appl. Sci. Manufact., 39, 514-522, 2008.
 
[41]  Sain, M., and Panthapulakkal, S., “Bioprocess preparation of wheat straw fibers and their characterization”, Indus. Crop. Prod., 23, 1-8, 2006.
 
[42]  Garside, P., and Wyeth, P., “Identification of cellulosic fibres by FTIR spectroscopy: Thread and single fibre analysis by attenuated total reflectance”, Stud. Conser, 48, 269-275, 2003.
 
[43]  Nelson, M. L., and O’Connor, R. T., “Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and amorphous cellulose”, J. Appl. Polym. Sci., 8, 1311-1324, 1964.
 
[44]  Nelson, M. L., and O’Connor, R. T., “Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II”, J. Appl. Polym. Sci., 8, 1325-1341, 1964.
 
[45]  Carrillo, F., Colom, X., Sunol, J. J., and Saurina, J., “Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres”, Eur. Polym. J., 40, 2229-2234, 2004.
 
[46]  O’Connor, R. T., DuPre, E. F., and Mitcham, D., “Application of infrared absorption spectroscopy to investigations of cotton and modified cottons. Part 1: physical and crystalline modifications and oxidation”, Textile Res. J., 28, 382-392, 1958.
 
[47]  Hurtubise, F. G., and Krassig, H., “Classification of fine structural characteristics in cellulose by infrared spectroscopy. Use of potassium bromide pellet technique”, Anal. Chem., 32, 177-181, 1960.
 
[48]  Oh, S. Y., Dong, I. Y., Shin, Y., Hwan, C. K., Hak, Y. K., Yong, S.C., Won, H. P., and Ji. H. Y., “Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy”, Carbohydr. Res., 340, 2376-2391, 2005.
 
[49]  Spiridon, I., Teaca, C.A., and Bodirlau, R., “Structural changes evidenced by FTIR Spectroscopy in cellulosic materials after pretreatment with ionic-liquid and enzymatic hydrolysis”, Bioresources, 6, 400-413, 2010.
 
[50]  Wada, M., Heux, L., and Sugiyama, J., “Polymorphism of cellulose I family: Reinvestigation of cellulose IV”, Biomacromolecules, 5, 1385-1391, 2004.
 
[51]  Park, S., JBaker, J. O., Himmel, M.E., Parilla, P.A., and Johnson, D. K., “Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance”, Biotechnol. Biofuels, 3, 1-10, 2010.
 
[52]  Maren, R., and William, T. W., “Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose”, Biomacromolecules, 5, 1671-1677, 2004.
 
[53]  Wang, N., Ding, E. Y., Chang, R. S., “Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups”, Polymer, 48, 3486-3493, 2007.
 
[54]  Li, W., Wang, R., and Liu, S., “Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis”, Bioresources, 6, 4271-4281, 2011.
 
[55]  George. J., Sajeevkumar, V.A., Kumar, R., Ramana, K. V., Sabapathy, S. N., and Bawa, A. S., “Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose”, J. Appl. Polym. Sci., 8, 1845-1851, 2008.
 
[56]  Julien, S., Chornet, E., and Overand, R. P., “Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose”, J. Analytic. Appl. Pyrol., 27, 25-43, 1993.
 
[57]  Kim, D. Y., Nishiyama, Y., Wada, M., and Kuga, S., “High yield carbonization of cellulose by sulfuric acid impregnation”, Cellulose, 8, 29-33, 2008.
 
[58]  George, J., Ramana, K. V., Bawa, A. S., and Siddaramaiah, “Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites”, Internl. J. Biologic. Macromol, 48, 50-57, 2011.