Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2019, 7(1), 20-28
DOI: 10.12691/jmpc-7-1-3
Open AccessArticle

Lipophilicity and QSAR Study of a Series of Makaluvamines by the Method of the Density Functional Theory: B3LYP/6-311++G(d,p)

Sékou DIOMANDÉ1 and Soleymane KONÉ1,

1Laboratoire de Chimie Organique et de Substances Naturelles de l’UFR SSMT, Université Félix Houphouët-BOIGNY, 22 BP 582 Abidbjan 22, Côte d’Ivoire

Pub. Date: November 12, 2019

Cite this paper:
Sékou DIOMANDÉ and Soleymane KONÉ. Lipophilicity and QSAR Study of a Series of Makaluvamines by the Method of the Density Functional Theory: B3LYP/6-311++G(d,p). Journal of Materials Physics and Chemistry. 2019; 7(1):20-28. doi: 10.12691/jmpc-7-1-3

Abstract

This work has focused on sixteen (16) Makaluvamines listed in the literature to date. It reveals the importance of lipophilicity and other molecular descriptors in the anticancer activity of these molecules. Indeed, these compounds have a high cytotoxicity several cancer cells including: leukaemia, colon, prostate, breast, ovary...... First, we determined the lipophilicity of ten (10) Makaluvamines for which the experimental values of FC50 concentrations on the mentioned cancer cells are known. The lipophilic values are calculated using four methods: Kowwin/LogP, ACD/LogP, A/LogPS and MI/LogP. The experimental values of the FC50 concentrations of these Makaluvamines are known. After that, we did a QSAR study of these ten molecules. This study includes the different lipophilic values calculated with other descriptors estimated at the B3LYP/6-311++G(d,p) theory level. Finally, the theoretical FC50 concentrations of the other six Makaluvamines were predicted with the four models established from the ten molecules.

Keywords:
lipophilicity Makaluvamines QSAR molecular descriptors and anticancer activity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote,P.T.; Prinsep, M.R. Nat. Prod. Rep. 2005, 22, 15.
 
[2]  Dijoux, M.-G.; Schnabel, P. C.; Hallock, Y. F.; Boswell, J. L.; Johnson, T. R.; Wilson, J. A.; Ireland, C. M.; Van Soest, R.; Boyd, M. R.; Barrows, L. R.; Cardellina, J. H. Bioorg. Med. Chem. 2005, 13, 6035-6044.
 
[3]  Chtita S. Modélisation de molécules organiques hétérocycliques biologiquement actives par des méthodes QSAR/QSAR. Recherche de nouveaux médicaments [thèse]. [Meknès]: Moulay Ismail; 2017.
 
[4]  Numbury Surendra Babu, Didugu Jayaprakash. Global and Reactivity Descriptors Studies of Cyanuric Acid Tautomers in Different Solvents by using of Density Functional Theory (DFT). Int J Sci Res IJSR. 2015; 4(6) :615-20.
 
[5]  P.J. Taylor, ―Hydrophobic Properties of Drugs, In Quantitative Drug Design‖, Pergamon Press, Oxford (UK), 4, 1990, 241-294.
 
[6]  C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, ―Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings‖, Advanced Drug Delivery Reviews, 6(1-3), 1997, 3-25.
 
[7]  Patrick GL. Chimie pharmaceutique. Paris : De Boeck; 2003.
 
[8]  Marie-Geneviève Dijoux, Peter C. Schnabel, Yali F. Hallock, Jamie L. Boswell, Tanya R. Johnson, Jennifer A. Wilson, Chris M. Ireland, Rob Van Soest, Michael R. Boyd, Louis R. Barrows and John H. Cardellina, II, Antitumor activity and distribution of pyrroiminoquinones in the sponge genus Zyzzya, Bioorganic and Medecinal Chemistry, 13, 2005, 6035-6044.
 
[9]  S.Chaltterjee, A.Hadi, B. Price, Regression Analysis by Examples; Wiley VCH: New York, USA, 2000.
 
[10]  Phuong HTN, thèse de doctorat « Synthèse et étude des relations structure/activité quantitatives (QSAR/2D) d’analogues Benzo[c]phénanthridiniques », Université d’Angers, (France), 2007.
 
[11]  Kubinyi Hugo, QSAR: Hansch analysis and related approaches, Weinheim; New York;Basel; Cambridge; Tokyo; VCH, 1993.
 
[12]  T.Cheng, Y.Zhao, X.Li, F. Lin, Y.Xu, X. Zhang, Y.Li, R. Wang, L.Lai, J.Chem.Inf.Model.; 47, 2007, 2140-2148.
 
[13]  Petrauskas A, Kolovanov EA. Perspect Drug Discov Des 18, 2000, 19-38.
 
[14]  molinspiration, 2018)
 
[15]  I.V.Tetko,V.Y.Tanchuk, J.Chem.Inf.Comput.Sci. 42, 2002, 1136-1145.
 
[16]  Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 
[17]  M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
 
[18]  Hohenberg, P.; Kohn, W. Inhomogeneous electron gas, 1964. Phys.Rev. 136, B864.
 
[19]  P.K. Chattaraj, A.Cedillo, and R.G Parr, J. Phys.Chem, 1991, 103: 7645.
 
[20]  P.W.Ayers, and R.G.Parr, J.Am Chem., Soc., 2000, 122:2010.
 
[21]  F. De Proft, J.M.L.Martin, and P. Geerlings, Chem. Phys. Let., 1996, 250:393
 
[22]  P.Geerlings, F. De Proft, J.M.L.Martin, In Theoretical and Computational Chemistry; Seminario, J., Ed.,; Elsevier; Amsterdam, 1996, 4 (Recent Developments in Density Functional Theory): 773.
 
[23]  F.De Proft, J.M.L. Martin, and P. Geerlings, Chem. Phys.Let., 1996, 256: 400.
 
[24]  C.Hansch, P.G. Sammes, and J.B. Taylor, Computers and the medicinal chemist; in: Comprehensive Medicinal Chemistry, 1990, 4, Eds. Pergamon Press, Oxford: 33-58.
 
[25]  R. Franke, Theoretical Drug Design Methods, Elsevier, Amsterdam, 1984.
 
[26]  Microsoft ® Excel ® 2013 (15.0.4420.1017) MSO (15.0.4420.1017) 64 Bits (2013) Partie de Microsoft Office Professionnel Plus.
 
[27]  XLSTAT Version 19.5.47062 (64 bit) Copyright 1995-2018 (2018) XLSTAT and Addinsoftware Registrered Trademarks of Addinsoft. https: //www.xlstat.com.
 
[28]  A.Vessereau, Méthodes statistiques en biologie et en agronomie. Lavoisier (Tec and Doc). Paris 1988 : 538
 
[29]  G.W. Snedecor, W.G. Cochran, Statistical Methods; Oxford and IBH: New Delhi,India; 1967: 381.
 
[30]  M.V.Diudea, QSAR/QSAR Studies for Molecular Descriptors; Nova Science: Huntingdon, New York, USA, 2000.
 
[31]  E.X.Esposito, A.J.Hopfinger, J.D.Madura, Methods in Molecular Biology, 2004, 275: 131-213.
 
[32]  L.Eriksson, J. Jaworska, A. Worth, M.T.D. Cronin, R.M.Mc Dowell, P.Gramatica, Methods for Reliability and Uncertainly Assessment and for Applicability Evaluations of Classification and Regression-Based QSARs, Environmental Health Perspectives, 2003, 111(10):1361-1375.
 
[33]  Sékou DIOMANDÉ, Affoué Lucie BÉDÉ, Soleymane KONÉ and El-Hadji Sawaliho BAMBA, Determination of protonation and methylation sites of neutral makaluvamines, relative stability and reactivity potential of the charged forms, International Journal of Innovation and Applied Studies, Vol. 25 No. 1 Dec. 2018, pp. 516-527.