Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2019, 7(1), 8-19
DOI: 10.12691/jmpc-7-1-2
Open AccessArticle

Substituent Effect on Intramolecular Hydrogen Bond and Electronic Structure of E)-2-(1H-Benzo[D]Imidazol-2-Yl)-3-Phenylacrylonitrile Derivatives: QTAIM and NBO Study

Adenidji Ganiyou1, Kicho Denis Yapo1, , Doumadé Zon2, Mamadou Guy-Richard Kone3 and Boka Robert N’guessan1

1Laboratoire de Chimie Organique et de Substances Naturelles, UFR-SSMT, Université Félix Houphouët-Boigny 22 BP 582 Abidjan 22, Côte d’Ivoire

2Département de biochimie-génétique, UFR sciences biologiques, Université Gon Coulibaly BP 1328 Korhogo, Côte-d’Ivoire BP 801 Abidjan 02, Côte-d’Ivoire

3Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte-d’Ivoire

Pub. Date: April 07, 2019

Cite this paper:
Adenidji Ganiyou, Kicho Denis Yapo, Doumadé Zon, Mamadou Guy-Richard Kone and Boka Robert N’guessan. Substituent Effect on Intramolecular Hydrogen Bond and Electronic Structure of E)-2-(1H-Benzo[D]Imidazol-2-Yl)-3-Phenylacrylonitrile Derivatives: QTAIM and NBO Study. Journal of Materials Physics and Chemistry. 2019; 7(1):8-19. doi: 10.12691/jmpc-7-1-2

Abstract

In this study the quantitative analysis of delocalization of electrons acceptor and electrons donor substituent lone pairs on (E)-2-(1H-benzo[d]imidazol-2-yl)-3-phenylacrylonitrile structure and its derivatives and the effects of the substituents on the strength of intramolecular hydrogen bond have been investigated. NBO analysis revealed two types of interactions with the lone pair of substituents The stabilization energies of interactions are generally greater than that of interactions. The insertion of -NO2 on the imidazole heterocycle leads to increase of its stabilization energy and induces a greater intramolecular charge transfer in these molecules. The positive values of interaction energies of the substituents -CH3, -N (CH3)2, -OH, -OCH3, -Cl and -Br show that they have electron-donating properties with respect to the title molecule. QTAIM analysis was also used to evaluate the strength and nature of intramolecular interactions. For types of intramolecular interactions have been observed The highest intramolecular interaction energy has been observed in A16 and A6 molecules at BCPs of with an interaction energy of 4.48945 and 4.38873 kcal/mol. Geometrical parameters and QTAIM result showed that these interactions are closed-shell interaction in nature.

Keywords:
NBO QTAIM Benzimidazole Electron density intramolecular hydrogen bond

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Y. Wang, S. Xue, R. Li et al., “Synthesis and biological evaluation of novel synthetic chalcone derivatives as anti-tumor agents targeting Cat L and Cat K,” Bioorganic & medicinal chemistry, vol. 26, no. 1, pp. 8-16, 2018.
 
[2]  Z. M. Nofal, E. A. Soliman, S. S. Abd El-Karim et al., “Synthesis of Some New Benzimidazole-Thiazole Derivatives as Anticancer Agents,” Journal of Heterocyclic Chemistry, vol. 51, no. 6, pp. 1797-1806, 2014.
 
[3]  L.-t. Wu, Z. Jiang, J.-j. Shen et al., “Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents,” European journal of medicinal chemistry, vol. 114, pp. 328-336, 2016.
 
[4]  Ş. Demirayak, U. Abu Mohsen, and A. Çağri Karaburun, “Synthesis and anticancer and anti-HIV testing of some pyrazino[1,2-a]benzimidazole derivatives,” European journal of medicinal chemistry, vol. 37, no. 3, pp. 255-260, 2002.
 
[5]  Ş. Demirayak and L. Yurttaş, “Synthesis and anticancer activity of some 1,2,3-trisubstituted pyrazinobenzimidazole derivatives,” Journal of enzyme inhibition and medicinal chemistry, vol. 29, no. 6, pp. 811-822, 2014.
 
[6]  H. Göker, C. Kuş, D. W. Boykin et al., “Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against candida species,” Bioorganic & medicinal chemistry, vol. 10, no. 8, pp. 2589-2596, 2002.
 
[7]  H. Göker, S. Ozden, S. Yildiz et al., “Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-N-alkylated-5-carboxamidines,” European journal of medicinal chemistry, vol. 40, no. 10, pp. 1062-1069, 2005.
 
[8]  T. Pan, X. He, B. Chen et al., “Development of benzimidazole derivatives to inhibit HIV-1 replication through protecting APOBEC3G protein,” European journal of medicinal chemistry, vol. 95, pp. 500-513, 2015.
 
[9]  A. K. Tewari and A. Mishra, “Synthesis and Antiviral Activities of N-Substituted-2-substituted-benzimidazole Derivatives,” Chem Inform, vol. 37, no. 23, p. 489, 2006.
 
[10]  H. A. BARKER, R. D. SMYTH, H. WEISSBACH et al., “Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5, 6-dimethylbenzimidazole,” The Journal of biological chemistry, vol. 235, pp. 480-488, 1960.
 
[11]  Y. Yao, Y. Che, and J. Zheng, “The Coordination Chemistry of Benzimidazole-5,6-dicarboxylic Acid with Mn(II), Ni(II), and Ln(III) Complexes (Ln = Tb, Ho, Er, Lu),” Crystal Growth & Design, vol. 8, no. 7, pp. 2299-2306, 2008.
 
[12]  D. Olea-Román, A. Solano-Peralta, G. Pistolis et al., “Lanthanide coordination compounds with benzimidazole-based ligands. luminescence and EPR,” Journal of Molecular Structure, vol. 1163, pp. 252-261, 2018.
 
[13]  N. Şırecı, Ü. Yilmaz, H. Küçükbay et al., “Synthesis of 1-substituted benzimidazole metal complexes and structural characterization of dichlorobis(1-phenyl-1 H -benzimidazole- κN3)cobalt(II) and dichlorobis (1-phenyl-1 H -benzimidazole- κN3 )zinc(II),” Journal of Coordination Chemistry, vol. 64, no. 11, pp. 1894-1902, 2011.
 
[14]  J. Kulhánek and F. Bureš, “Imidazole as a parent π-conjugated backbone in charge-transfer chromophores,” Beilstein journal of organic chemistry, vol. 8, pp. 25-49, 2012.
 
[15]  F. Saczewski, E. Dziemidowicz-Borys, P. J. Bednarski et al., “Synthesis, crystal structure and biological activities of copper(II) complexes with chelating bidentate 2-substituted benzimidazole ligands,” Journal of inorganic biochemistry, vol. 100, no. 8, pp. 1389-1398, 2006.
 
[16]  S. Scheiner, Hydrogen bonding: A theoretical perspective, Oxford University Press, New York, 1997.
 
[17]  P. Gilli, V. Bertolasi, V. Ferretti et al., “Evidence for Intramolecular N−H···O Resonance-Assisted Hydrogen Bonding in β-Enaminones and Related Heterodienes. A Combined Crystal-Structural, IR and NMR Spectroscopic, and Quantum-Mechanical Investigation,” Journal of the American Chemical Society, vol. 122, no. 42, pp. 10405-10417, 2000.
 
[18]  P. Gilli, V. Bertolasi, V. Ferretti et al., “Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H--O system by crystal structure correlation methods,” Journal of the American Chemical Society, vol. 116, no. 3, pp. 909-915, 1994.
 
[19]  P. Gilli, V. Bertolasi, L. Pretto et al., “Covalent versus electrostatic nature of the strong hydrogen bond: Discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in beta-diketone enol RAHB systems,” Journal of the American Chemical Society, vol. 126, no. 12, pp. 3845-3855, 2004.
 
[20]  J. Liu, X. He, J. Z. H. Zhang et al., “Hydrogen-bond structure dynamics in bulk water: Insights from ab initio simulations with coupled cluster theory,” Chemical science, vol. 9, no. 8, pp. 2065-2073, 2018.
 
[21]  F. Cipcigan, V. Sokhan, G. Martyna et al., “Structure and hydrogen bonding at the limits of liquid water stability,” Scientific reports, vol. 8, no. 1, p. 1718, 2018.
 
[22]  C. Fonseca Guerra, F. M. Bickelhaupt, J. G. Snijders et al., “The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance,” Chemistry - A European Journal, vol. 5, no. 12, pp. 3581-3594, 1999.
 
[23]  S. J. Grabowski, “What is the covalency of hydrogen bonding?,” Chemical reviews, vol. 111, no. 4, pp. 2597-2625, 2011.
 
[24]  A. S. Hansen, L. Du, and H. G. Kjaergaard, “The effect of fluorine substitution in alcohol-amine complexes,” Physical chemistry chemical physics: PCCP, vol. 16, no. 41, pp. 22882-22891, 2014.
 
[25]  I. V. Alabugin, Stereoelectronic effects: A bridge between structure and reactivity, Wiley, Chichester, West Sussex, UK, Hoboken, NJ, USA, 2016.
 
[26]  R. G. Parr, “Density Functional Theory of Atoms and Molecules,” in Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry Held at Kyoto, Japan, October 29 - November 3, 1979, K. Fukui and B. Pullman, Eds., pp. 5-15, Springer Netherlands, Dordrecht, 1980.
 
[27]  J. K. Labanowski and J. Andzelm, Density functional methods in chemistry, Springer New York, New York, N.Y., 1991.
 
[28]  Gaussian 09, Revision D.01 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, In
 
[29]  AIMAll (Version 10.05.04), Todd A. Keith, 2010 (aim.tkgristmill.com).
 
[30]  Glendening, A. E. Reed, J. E. Carpenter et al., “NBO Version 3.1,” NBO Version 3.1.
 
[31]  M. Snehalatha, C. Ravikumar, I. Hubert Joe et al., “Spectroscopic analysis and DFT calculations of a food additive carmoisine,” Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol. 72, no. 3, pp. 654-662, 2009.
 
[32]  F. WEINHOLD and C. R. LANDIS, “Natural Bond Orbitals and extensions of localized bonding concepts,” Chem. Educ. Res. Pract., vol. 2, no. 2, pp. 91-104, 2001.
 
[33]  R. F. W. Bader, Atoms in molecules: A quantum theory, Clarendon Press; Oxford University Press, Oxford England, New York, 1994.
 
[34]  I. Rozas, I. Alkorta, and J. Elguero, “Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors,” Journal of the American Chemical Society, vol. 122, no. 45, pp. 11154-11161, 2000.
 
[35]  Y.-Z. Yang, X.-F. Liu, R.-B. Zhang et al., “Joint experimental and theoretical studies of the surprising stability of the aryl pentazole upon noncovalent binding to β-cyclodextrin,” Physical chemistry chemical physics : PCCP, vol. 19, no. 46, pp. 31236-31244, 2017.
 
[36]  E. Espinosa, E. Molins, and C. Lecomte, “Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities,” Chemical Physics Letters, vol. 285, 3-4, pp. 170-173, 1998.
 
[37]  B. Vijaya Pandiyan, P. Deepa, and P. Kolandaivel, “Do resonance-assisted intramolecular halogen bonds exist without a charge transfer and a σ-hole?,” Physical chemistry chemical physics: PCCP, vol. 17, no. 41, pp. 27496-27508, 2015.
 
[38]  O. Exner, “The inductive effect: Theory and quantitative assessment,” Journal of Physical Organic Chemistry, vol. 12, no. 4, pp. 265-274, 1999.
 
[39]  S. Böhm and O. Exner, “π-Electron densities and resonance effects in benzene monoderivatives,” Journal of Molecular Structure: THEOCHEM, vol. 578, 1-3, pp. 103-109, 2002.
 
[40]  G. Buemi, “Intramolecular Hydrogen Bonds. Methodologies and Strategies for Their Strength Evaluation,” in Hydrogen bonding-new insights, S. J. Grabowski, Ed., pp. 51-107, Springer, Dordrecht, 2006.
 
[41]  U. Koch and P. L. A. Popelier, “Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density,” The Journal of Physical Chemistry, vol. 99, no. 24, pp. 9747-9754, 1995.
 
[42]  I. V. Alabugin, M. Manoharan, S. Peabody et al., “Electronic basis of improper hydrogen bonding: A subtle balance of hyperconjugation and rehybridization,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5973-5987, 2003.