Journal of Materials Physics and Chemistry
ISSN (Print): 2333-4436 ISSN (Online): 2333-4444 Website: http://www.sciepub.com/journal/jmpc Editor-in-chief: Dr. A. Heidari
Open Access
Journal Browser
Go
Journal of Materials Physics and Chemistry. 2019, 7(1), 1-7
DOI: 10.12691/jmpc-7-1-1
Open AccessArticle

QSAR Studies of the Antifungal Activities of α-Diaminophosphonates Derived from Dapsone by DFT Method

Jean Stéphane N’dri1, Ahmont Landry Claude Kablan2, Bafétigué Ouattara3, Mamadou Guy-Richard Koné1, , Lamoussa Ouattara1, Charles Guillaume Kodjo1, 4 and Nahossé Ziao1

1Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, UFR SFA, Université Nangui Abrogoua 02 BP 801 Abidjan 02, Côte-d’Ivoire

2UFR des Sciences Biologiques, Université Péléforo Gon Coulibaly de Korhogo, BP 1328 Korhogo, Côte d’Ivoire

3UFR des Sciences Fondamentales et Appliquées, Université Nangui Abrogoua 02 BP 801 Abidjan 02, Côte-d’Ivoire

4Laboratoire de Chimie BioOrganique et de Substances Naturelles, Université Nangui Abrogoua, UFR-SFA, 02 B.P. 801 Abidjan 02 Côte-d’Ivoire

Pub. Date: January 22, 2019

Cite this paper:
Jean Stéphane N’dri, Ahmont Landry Claude Kablan, Bafétigué Ouattara, Mamadou Guy-Richard Koné, Lamoussa Ouattara, Charles Guillaume Kodjo and Nahossé Ziao. QSAR Studies of the Antifungal Activities of α-Diaminophosphonates Derived from Dapsone by DFT Method. Journal of Materials Physics and Chemistry. 2019; 7(1):1-7. doi: 10.12691/jmpc-7-1-1

Abstract

This QSAR study focused on a series of α-diaminophosphonates derived from Dapsone. Three models have been obtained by taking into account both molecular descriptors and antifungal activities such as those of Aspergillus niger, Aspergillus foetidus and Fusarium oxysporum. Quantum chemistry methods were used at B3LYP/6-31G (d) calculation level to obtain the molecular descriptors. The statistical indicators of the first model which talk about Aspergillus niger activity are: the determination coefficient R2 = 0.976, the standard deviation S = 0.034, the Fischer test F = 80.857 and the correlation coefficient of the cross-validation Q2CV = 0.975. Those of the second model which highlight Aspergillus foetidus activity are: regression coefficient R2 = 0.946, standard deviation S = 0.041, Fischer test F = 35.353 and cross-validation correlation coefficient Q2CV = 0.943. The statistical indicators of the third model are: the determination coefficient R2 = 0.931, the standard deviation S = 0.065, the Fischer F = 27.043 and the correlation coefficient of the cross-validation Q2CV = 0.926. This last model talks about Fusarium oxysporum activity. These models, according to the values of their statistical descriptors, possess good statistical performance. The quantum descriptors such as global electronegativity (χ), the energy of the highest occupied molecular orbital (EHO) and electronic energy (ε0) are responsible for the biological activities of the studied Dapsone derivatives. In addition, electronic energy and global electronegativity are proved to be the priority descriptors in predicting the antifungal activities of these Dapsone derivatives. The acceptance criteria of Eriksson et al. used for the test set are verified. The values of the ratio of theoretical and experimental activities for the validation set tend towards unity.

Keywords:
antifungal activities α-diaminophosphonates QSAR quantum descriptors DFT method

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Aide mémoire N°139, Aout (2013).
 
[2]  Aide mémoire N°297, Février (2014).
 
[3]  D. S. Richard, C. Joanna, Bull. World Health Organ., 80, 126, (2002).
 
[4]  B.A. Gaüzère, La lèpre ou Maladie de Hansen, 1, (2016).
 
[5]  P. D. Mehta, A. K. Pathak, synthesis, characterization and in vitro antimicrobial activity of Novel 4,4′-bis[3-chloro-4-aryl-azetidin-2-one-1-yl]diphenyl sulphones, Bulletin of Pharmaceutical Research, 1(3): 38-48, (2011).
 
[6]  S. J. Wadher, M. P. Puranik, N. A. Karande and P. G. Yeole, Synthesis and Biological Evaluation of Schiff base of Dapsone and their derivative as Antimicrobial agents, International Journal of PharmTech Research, Vol. 1, No. 1, pp 22-33, (2009).
 
[7]  P. D. Mehta, N. P. S. Sengar, E. V. S. Subrahmanyam1 and D. Satyanarayana, Synthesis and Biological Activity Studies of Some Thiazolidinones and Azetidinones, Indian Journal of Pharmaceutical Sciences, (2006).
 
[8]  G. Fayet, Thèse de doctorat: Développement de modèles QSPR pour la prediction des propriétés d'explosibilité des composés nitroaromatiques, Université Pierre et Marie Curie (France), p: 57, présentée le 30 mars. (2010).
 
[9]  T. I. Oprea, “Chemoinformatics in Drug Discovery” Ed. WILEY-VCH Verlag. Allemagne, (2005).
 
[10]  E. A. Rekka; P. N. Kourounakis “Chemistry and Molecular Aspects of Drug Design and Action” Ed. Taylor & Francis Group, LLC. Etats Unies, (2008).
 
[11]  M.A. Phillips, R. Fletterick, W.J. Rutter, Arginine 127 stabilizes the transition state in carboxypeptidase, J. Biol. Chem. 265, 20692–20698, (1990).
 
[12]  F.R. Atherton, C.H. Hassal, R.W. Lambert, Synthesis and structure–activity relationship of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid, J. Med. Chem. 29, 29-41, (1986).
 
[13]  L. Maier, Synthesis and properties of 1-amino-2-arylethylphosphonic acid and phosphinic acids as well as phosphine oxides, Phosphorus, Sulfur Silicon Relat. Elem. 53, 43-67, (1990).
 
[14]  L. Maier, H. Spoerri, Organic phosphorus compounds 96.1 resolution of 1-amino-2-(4-fluorophenyl)ethylphosphonic acid as well as some di- and tripeptides, Phosphorus, Sulfur Silicon Relat. Elem. 61, 69-75, (1991).
 
[15]  J.H. Meyer, P.A. Barlett, Macrocyclic inhibitors of penicillopepsin. 1: design, synthesis, and evaluation of an inhibitor bridged between P1 and P3, J. Am. Chem. Soc. 120, 4600-4609, (1998).
 
[16]  D.J. Miller, S.M. Hammond, D. Anderluzzi, et al., Aminoalkylphosphinate inhibitors of d-Ala-d-Ala adding enzyme, J. Chem. Soc. Perkin Trans. 1, 131-142, (1998).
 
[17]  M.C. Allen, W. Fuhrer, B. Tuck, et al., Renin inhibitors: synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond, J. Med. Chem. 32, 1652-1661, (1989).
 
[18]  J. Oleksyszyn, J.C. Powers, Irreversible inhibition of serine proteases by peptide derivatives of (a-aminoalkyl) phosphonate diphenyl esters, Biochemistry 30, 485-493, (1991).
 
[19]  Subba Rao Devineni, Srinivasulu Doddaga, Rajasekhar Donka, Naga Raju Chamarthi, CeCl3.7 H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates, Chinese Chemical Letters 24, 759-763 (2013).
 
[20]  S. Chaltterjee, A. Hadi, B. Price, Regression Analysis by Examples; Wiley VCH: New York, USA, (2000).
 
[21]  Phuong HTN, «Synthèse et étude des relations structure/activité quantitatives (QSAR/2D) d’analogues Benzo [c] phénanthridiniques» Doctorat Thesis, Angers University, (France), (2007).
 
[22]  Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT,
 
[23]  P. K. Chattaraj, A. Cedillo, and R. G. Parr, J. Phys. Chem., 103: 7645, (1991).
 
[24]  P. W. Ayers, and R. G. Parr, (2000), J. Am Chem., Soc, 122: 2000, (2010).
 
[25]  F. De Proft, J. M. L. Martin, and P. Geerlings, Chem. Phys Let., 250: 393, (1996).
 
[26]  P. Geerlings, F. De Proft, and J. M. L. Martin, In Theoretical and Computational Chemistry; Seminario, J., Ed.; Elsevier; Amsterdam. Vol-4 (Recent Developments in Density Functional Theory), p773, (1996).
 
[27]  F. De Proft, J. M. L. Martin, and P. Geerlings, Chem. Phys Let., 256: 400, (1996).
 
[28]  F. De Proft, and P. Geerlings, J Chem Phys, 106: 3270, (1997).
 
[29]  P. Geerlings, F. De Proft, and W. Langenaeker, Adv. Quantum Chem.33: 303, (1996).
 
[30]  R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys., 68: 3801, (1978).
 
[31]  C. Hansch, P. G. Sammes, and J. B. Taylor, Computers and the medicinal chemist; in: Comprehensive Medicinal Chemistry, vol. 4, Eds. Pergamon Press, Oxford, pp. 33-58, (1990)
 
[32]  R. Franke, Theoretical Drug Design Methods, Elsevier, Amsterdam, (1984).
 
[33]  Microsoft ® Excel ® 2013 (15.0.4420.1017) MSO (15.0.4420.1017) 64 Bits (2013) Partie de Microsoft Office Professionnel Plus.
 
[34]  XLSTAT Version 2014.5.03 Copyright Addinsoft 1995-2014 (2014) XLSTAT and Addinsoft are Registered Trademarks of Addinsoft. https://www.xlstat.com.
 
[35]  Katritzky A R, Lobanov V S, Karelson M, CODESSA Comprehensive Descriptors for Structural and Statistical Analysis, Reference Manual, version 2.0, University of Florida, FL Gainesville, (1994).
 
[36]  Nalimov V Y, The Application of Mathematical Statistics to Chemical Analysis, Addison-Wesley, Reading, M A, (1962).
 
[37]  Calcutt R, Body R, Statistics for Analytical Chemists, Champman & Hall, New York, (1983).
 
[38]  Miller J C, Miller JN, Statistics for Analytical Chemistry, 2nd ed. Ellis Horwood, New York, p. 137, (1988).
 
[39]  Meier P C, Zund RE, Statistical Methods in Analytical Chemistry, John Wiley & Sons, New York, pp 84-120, (1993).
 
[40]  Dagnélie P, Statistique Théorique et Appliquée: Statistique descriptive et bases de l'inférence statistique, Tomes 1, De Boeck et S. Larcier, Bruxelle, p.508 (french), (1998)
 
[41]  G. W. Snedecor, W. G. Cochran, Statistical Methods; Oxford and IBH: New Delhi, India; p. 381, (1967).
 
[42]  M. V. Diudea, QSPR/QSAR Studies for Molecular Descriptors; Nova Science: Huntingdon, New York, USA, (2000).
 
[43]  Y. H. Kpidi, O. B. Yapo, M. G-R. Koné, G. A. Gadji, A. E. J. E. Y. Gnagne, J. S. N’dri, and N. Ziao, “Monitoring and Modeling of Chlorophyll-a Dynamics in a Eutrophic Lake: M'koa Lake (Jacqueville, Ivory Coast).” American Journal of Environmental Protection, vol. 6, no. 1, 1-9, (2018).
 
[44]  E. X. Esposito, A. J. Hopfinger, J. D. Madura, Methods in Molecular Biology, 275, 131-213, (2004).
 
[45]  L. Eriksson, J. Jaworska, A. Worth, M.T. D. Cronin, R. M. Mc Dowell, P. Gramatica, Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs, Environmental Health Perspectives, 111(10):1361-1375, (2003).
 
[46]  K. N. N’guessan, M. G.-R. Koné, K. Bamba, Ouattara W. P. et N. Ziao, «Quantitative Struc ture Anti-Cancer Activity Relationship (QSAR) of a Series of Ruthenium Complex Azopyridine by the Density Functional Theory (DFT) Method» Computational Molecular Bioscience, vol. 7, pp. 19-31, (2017).