Journal of Mechanical Design and Vibration
ISSN (Print): 2376-9564 ISSN (Online): 2376-9572 Website: http://www.sciepub.com/journal/jmdv Editor-in-chief: Shravan H. Gawande
Open Access
Journal Browser
Go
Journal of Mechanical Design and Vibration. 2017, 5(1), 21-26
DOI: 10.12691/jmdv-5-1-3
Open AccessArticle

Constrained-layer Damping Applied to DCJ Vibration Isolation Design

G. M. Luo1,

1Department of Naval Architecture and Ocean Engineering, National Kaohsiung Marine University

Pub. Date: May 11, 2017

Cite this paper:
G. M. Luo. Constrained-layer Damping Applied to DCJ Vibration Isolation Design. Journal of Mechanical Design and Vibration. 2017; 5(1):21-26. doi: 10.12691/jmdv-5-1-3

Abstract

A dual piezoelectric cooling jet (DCJ) is an innovative cooling device that uses piezoelectric materials to generate high-speed vibrations, thereby causing changes in the flow field to achieve heat exchange. Despite its high cooling efficiency, a DCJ transfers vibrations through its supporting base to its peripheral devices. To attenuate vibrations from DCJs, this study employed constrained-layer damping (CLD)-a technique for suppressing vibrations-to develop a base for cooling devices and to propose a C-DCJ model. ANSYS simulation of the vibrations of a DCJ and the C-DCJ suggested that, under the same vibration conditions and with the same levels of cooling efficiency, the amplitude and acceleration of the base on the C-DCJ were 30%–50% lower than that on the DCJ. Thus, the proposed C-DCJ effectively isolated vibration transfer.

Keywords:
dual piezoelectric cooling jets constrained-layer damping

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  H. Peter de Bocka, P. Chamarthya, J. L. Jacksonb, B. Whalena, Investigation and application of an advanced dual piezoelectric cooling jet to a typical electronics cooling configuration. Thermal and Thermomechanical Phenomena in Electronic Systems, 2012 13th IEEE Intersociety Conference, 1387-1394, San Diego, CA, IEEE.
 
[2]  S. F. Sufian, M. Z. Abdullah, J. J. Mohamed, Effect of synchronized piezoelectric fans on microelectronic cooling performance. International Communications in Heat and Mass Transfer, 43, 81-89, 2013.
 
[3]  D. Jang, K. Lee, Flow characteristics of dual piezoelectric cooling jets for cooling applications in ultra-slim electronics. International Journal of Heat Mass Transfer, 79, 201-211, 2014.
 
[4]  J. Callahan, H. Baruh, Vibration monitoring of cylindrical shells using piezoelectric sensors. Finite Elements in Analysis Design, 23, 303-318, 1996.
 
[5]  S. Y. Wang, A finite element model for the static and dynamic analysis of a piezoelectric bimorph. International Journal of Solids and Structures, 41, 4075-4096, 2004.
 
[6]  S. X. Xu, T. S. Koko, Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elements in Analysis Design, 40, 241-262, 2004.
 
[7]  C. H. Nguyen, S. J. Pietrzko, FE analysis of a PZT-actuated adaptive beam with vibration damping using a parallel R–L shunt circuit. Finite Elements in Analysis Design, 42, 1231-1239, 2006.
 
[8]  X. J. Dong, G. Meng, J. C. Peng, Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study. Journal of Sound and Vibration, 297, 680-693, 2006.
 
[9]  L. Sui, X. Xiong, G. Shi, Piezoelectric actuator design and application on active vibration control. Physics Procedia, 25, 1388-1396, 2012.
 
[10]  S. B. Choi, H. S. Kim, J. S. Park, Multi-mode vibration reduction of a CD-ROM drive base using a piezoelectric shunt circuit. Journal of Sound and Vibration, 300, 160-175, 2007.
 
[11]  L. Malgaca, Integration of active vibration control methods with finite element models of smart laminated composite structures. Composite Structures, 92, 1651-1663, 2010.
 
[12]  Z. Xie, X. Xue, A new plate finite element model for rotating plate structures with constrained damping layer. Finite Elements in Analysis and Design, 47, 487-495, 2011.
 
[13]  Y. Hong, X. D. He, R. G. Wang, Vibration and damping analysis of a composite blade. Materials & Design, 34, 98-105, 2012.
 
[14]  S. Kaviani, M. Bahrami, A. M. Esfahani, B. Parsi, A modeling and vibration analysis of a piezoelectric micro-pump diaphragm. Comptes Rendus Mécanique , 342, 692-699, 2014.
 
[15]  X. Zhong, Q. Wu, X. Li, Influence of enclosure wall vibration on the frequency response of miniature loudspeakers. Applied Acoustics, 93, 9-14, 2015.
 
[16]  H. Oberst, Uber die Damping der Biegeschwingungen dunner Bleche durch fest haftende Belage. Acta Acustica united with Acustica, 2, 181-194, 1952.
 
[17]  R. Ross, E. E. Ungar, E. M. Kerwin, Damping of plate flexural vibration by means of viscoelastic laminate. Structural Damping, ASME, New York, 1959.
 
[18]  E. M. Kerwin, Damping of flexural waves by a constrained viscoelastic layer. Acoustical Society of America, 31, 952-965, 1959.
 
[19]  R. A. Ditaranto, Theory of vibratory bending for elastic and viscoelastic layer. Applied Mechanics, 32, 881-886, 1965.
 
[20]  R. A. Ditaranto, J. R. McGraw, Vibratory damping for laminated plates. Engineering for Industry, 91, 1081-1090, 1969.
 
[21]  M. J. Yan, E. H. Dowell, Governing equations for vibrating constrained layer damping sandwich plates and beams. Applied Mechanics, 39, 1041-1046, 1972.
 
[22]  Y. P. Lu, G. C. Everstine, More on finite element modeling of damped composite systems. Sound and Vibration, 69, 199-205, 1980.
 
[23]  C. D. Johnson, D. A. Kienholz, Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA Journal, 20, 1284-1290, 1982.
 
[24]  E. Barkanov, Transient response analysis of structures made form viscoelastic materials. International journal for numerical methods in engineering, 44, 393-403, 1999.
 
[25]  V. Balamurugan, S. Narayanan, Finite Element Formulation and Active Vibration Control Study on Beams Using Smart Constrained Layer Damping (SCLD) Treatment. Journal of Sound and Vibration, 249, 227-250, 2002.
 
[26]  T. X. Liu, H. X. Hua, Z. Zhang, Robust control of plate vibration via active constrained layer damping. Thin-Walled Structures, 42, 427-448, 2004.
 
[27]  H. Zheng, G. S .H. Pau, Y. Y. Wang, A comparative study on optimization of constrained layer damping treatment for structural vibration control. Thin-Walled Structures, 44, 886-896, 2006.
 
[28]  G. M. Luo, Y. J. Lee, Simulation of constrained layered damped laminated plates subjected to low-velocity impact using a quasi-static method. Composite Structures, 88, 290-295, 2009.
 
[29]  G. M. Luo, Y. J. Lee, C. H. Huang, The application and conduct of vibration equations for constrained layered damped plates with impact. J. Steel and Composite Structures, 8, 4, 281-296, 2008.
 
[30]  D. Granger, A. Ross, Effects of partial constrained viscoelastic layer damping parameters on the initial transient response of impacted cantilever beams: Experimental and numerical results. Journal of Sound and Vibration, 321, 45-64, 2009.
 
[31]  N. Kumar, S. P. Singh, Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations. Materials & Design, 30, 4162-4174, 2009.
 
[32]  G. Lepoittevin, G. Kress, Optimization of segmented constrained layer damping with mathematical programming using strain energy analysis and modal data. Materials & Design, 31, 14-24, 2010.
 
[33]  ISO 2631-1-1997: Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part1 General requirements.