[1] | Liaquat, A.M.; Kalam, M.A.; Masjuki, H.H.; Jayed, M.H. Potential emission reduction in road transport sector using biofuel in developing countries. Atmos. Environ. 2010, 44, 3869-3877. |
|
[2] | Lin, C.Y.; Huang, T.H.; Cost-benefit evaluation of using biodiesel as an alternative fuel for fishing boats in Taiwan. Mar. Policy 2012, 36, 103-107. |
|
[3] | Boey, P.L.; Ganesan, S.; Maniam, G.P.; Khairuddean, M.; Lim, S.L. A new catalyst system in transesterification of palm olein: Tolerance of water and free fatty acids. Energy Convers. Manag. 2012, 56, 46-52. |
|
[4] | Anitescu, G.; Bruno, T.J. Fluid properties needed in supercritical transesterification of triglyceride feedstocks to biodiesel fuels for efficient and clean combustion—A review. J. Supercrit. Fluids 2012, 63, 133-149. |
|
[5] | Haas, M.J.; Scott, K.M.; Alleman, T.L.; McCormick, R.L. Engine performance of biodiesel fuel prepared from soybean soapstock: A high quality renewable fuel produced from a waste feedstock. Energy Fuels 2001, 15, 1207-1212. |
|
[6] | Park, J.Y.; Wang, Z.M.; Kim, D.K.; Lee, J.S. Effects of water on the esterification of free fatty acids by acid catalysts. Renew. Energy 2010, 35, 614-618. |
|
[7] | Boer, K.; Bahri, P.A. Supercritical methanol for fatty acid methyl ester production: A review. Biomass Bioenergy 2011, 35, 983-991. |
|
[8] | Haas, M. Improving the economics of biodiesel production through the use of low value lipids as feedstocks: Vegetable oil soapstock. Fuel Process. Technol. 2005, 86, 1087-1096. |
|
[9] | Azocar, L.; Ciudad, G.; Heipieper, H.J.; Navia, R. Biotechnological processes for biodiesel production using alternative oils. Appl. Microbiol. Biotechnol. 2010, 88, 621-636. |
|
[10] | Anitescu, G.; Deshpande, A.; Tavlarides, L.L. Integrated technology for supercritical biodiesel production and power cogeneration. Energy Fuels 2008, 22, 1391-1399. |
|
[11] | Bunyakiat, K.; Makmee, S.; Sawangkeaw, R.; Ngamprasertsith, S. Continuous production of biodiesel via transesterification from vegetable oils in supercritical methanol. Energy Fuels 2006, 20, 812-817. |
|
[12] | Operational Manual for the Supercritical-Methanol Reacting System; Jeoou Rong Industrial Corp.: Taipei, Taiwan, 2006. |
|
[13] | Operational Instruction Manual for the 1266 Isoperibol Bomb Calorimeter; Parr Instrument Company: Moline, IL, USA, 1988. |
|
[14] | Pulkrabek, W.W. Thermochemistry and Fuels. In Engineering Fundamentals of the Internal Combustion Engine, 2nd ed.; Pearson Prentice-Hall Inc.: Singapore, 2004; pp. 168-169. |
|
[15] | Lin, C.Y.; Chiu, C.C. Characteristics of palm-oil biodiesel under long-term storage conditions. Energy Convers Manag. 2010, 51, 1464-1467. |
|
[16] | Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sust. Energy Rev. 2012, 16, 143-169. |
|
[17] | Demirbas, A. Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions. Bioresour. Technol. 2008, 99, 1125-1130. |
|
[18] | Focke, W.W.; Westhuizen, I.; Grobler, A.B.L.; Nshoane, K.T.; Reddy, J.K.; Luyt, A.S. The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel 2012, 94, 227-233. |
|
[19] | Arisoy, K. Oxidative and thermal instability of biodiesel. Energy Source 2008, 30 1516-1522. |
|
[20] | Aktas, D.F.; Lee, J.S.; Little, B.J.; Ray, R.I.; Davidova, I.A.; Lyles, C.N.; Suflita, J.M. Anaerobic metabolism of biodiesel and its impact on metal corrosion. Energy Fuels 2010, 24, 2924-2928. |
|
[21] | Lapuerta, M.; Rodrıguez-Fernandez, J.; Fermın Oliva, F.; Canoira, L. Biodiesel from low-grade animal fats: diesel engine performance and Emissions. Energy Fuels 2009, 23, 121-129. |
|
[22] | Lin, C.Y.; Li, R.J. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish. Fuel Process. Technol. 2009, 90, 130-136. |
|
[23] | Kotwal MS, Niphadkar PS, Deshpande SS, Bokade VV, Joshi PN. Transesterification of sunflower oil catalyzed by fly ash-based solid catalysts. Fuel 2009: 88: 1773-78. |
|
[24] | Artkla S, Grisdanurak N, Neramittagapong S, Wittayakun J. Characterization and catalytic performance on transesterification of palm olein of potassium oxide supported on RH-MCM-41 from rice husk silica. Suranaree J. Sci. Technol 2008; 15 (2): 133-38. |
|
[25] | Ramos MJ, Casas A, Rodriguez L, Romero R, Perez A. Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. Applied Catalysis A: General 2008; 346 (1-2): 79-85. |
|
[26] | Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1056-1070. |
|
[27] | Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C.; Padmakumari, K. Artificial neural networks used for the prediction of the cetane number of biodiesel. Renew. Energy 2006, 31, 2524-2533. |
|
[28] | Georgogianni KG, Katsoulidis AP, Pomonis PJ, Kontominas MG. Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts. Fuel Processing Technology 2009; 90: 671-76. |
|
[29] | Van Gerpen VJ, Shanks B, Pruszko R, Clement D, Knothe G. Basics of biodiesel production, biodiesel production technology. NREL/ SR-510-36244, Colorado, 2004; 1-22. |
|
[30] | Altıparmak D, Keskin A, Koca A, Gu¨ ru¨ M. Alternative fuel properties of tall oil fatty acid methyl esters-diesel fuel blends. Bioresour Technol 2007; 98: 241-246. |
|
[31] | Keskin A, Gu¨ ru¨ M, Altıparmak D. Biodiesel production from tall oil with synthesized Mn and Ni based additives on fuel consumption and emissions. Fuel 2007; 7-8: 1139-43. |
|
[32] | Silva FN, Prata AS, Teixeira JR. Technical feasibility assessment of oleic sunflower methyl ester utilization in diesel bus engines. Energy Convers Manage 2003; 44: 2857-78. |
|