Journal of Mechanical Design and Vibration
ISSN (Print): 2376-9564 ISSN (Online): 2376-9572 Website: http://www.sciepub.com/journal/jmdv Editor-in-chief: Shravan H. Gawande
Open Access
Journal Browser
Go
Journal of Mechanical Design and Vibration. 2014, 2(4), 94-101
DOI: 10.12691/jmdv-2-4-4
Open AccessArticle

Determination of Optimal Stacking Sequence for Modal Characteristics Evaluation of Composite Marine Propeller Blade

M.L. PavanKishore1, and R.K. Behera1

1Department of Mechanical engineering, National Institute of Technology, Rourkela, India

Pub. Date: November 25, 2014

Cite this paper:
M.L. PavanKishore and R.K. Behera. Determination of Optimal Stacking Sequence for Modal Characteristics Evaluation of Composite Marine Propeller Blade. Journal of Mechanical Design and Vibration. 2014; 2(4):94-101. doi: 10.12691/jmdv-2-4-4

Abstract

The design of optimum marine propeller is one of the most important aspects of naval architecture. With the increase in demands for high operating efficiency, power and low level of noise, vibration reduction the design of propellers became extremely complex. This paper describes the numerical prediction of free vibration characteristics of a B-series propeller using finite element approach as a base line method. The propeller analysis is performed as a single objective function subjected to the constraints imposed by cavitation, material strength and propeller thrust. An important aspect of autonomous underwater vehicle is to evaluate its modal characteristics in terms of its mode shapes and natural frequencies. The effect of stacking sequences, fibre orientation angles are studied and finally an optimum stacking sequence has been determined for optimum characteristics of B-series (B4-0.7) marine propellers.

Keywords:
Ansys finite elements mesh mode shapes pre twist

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  J.E.Conolly, “Strength Of Propellers”, reads in London at a meeting of the royal intuition of naval architects on Dec 1,1960,pp 139-160.
 
[2]  Leissa, K.I. Jacob, Three-dimensional vibrations of twistedcantilevered parallelepipeds, Journal of Applied Mechanics-Transactions of the ASME 53, (1986), 614-618.
 
[3]  R.E. Kielb, A.W. Leissa, J.C. MacBain, Vibrations of twistedcantilever plates-a comparison of theoretical results, International Journal for Numerical Methods in Engineering 21, (1985), 1365-1380.
 
[4]  South well. R and F. Gough, The free transverse vibration of airscrew blade, British A.R.C. Reports and Memoranda, 1921, No. 766.
 
[5]  P.P. Fried mann, F. Straub, Application of the finite element methodto rotary-wing aero elasticity, Journal of American Helicopter Society 25 (1980) 36-44.
 
[6]  N.T. Sivaneri, I. Chopra, Dynamic stability of a rotor blade usingfinite element analysis, AIAA Journal 20 (1982) 716-723.
 
[7]  Decolon.Estimation a posteriori et adaptation de malliages. coordinateur Michel Fortin, Hermes, 2000.
 
[8]  M.R.M. Crespo Da Silva, A comprehensive analysis of thedynamics of a helicopter rotor blade, International Journal of Solids and Structures 35 (7–8) (1998) 619-635.
 
[9]  V. Ramamurti, R. Kielb, Natural frequencies of twisted rotating plates, Journal of Sound and Vibration 97 (1984) 429-449.
 
[10]  S. Sreenivasamurthy, V. Ramamurti, A parametric study ofvibration of rotating pre-twisted and tapered low aspect ratiocantilever plates, Journal of Sound and Vibration 76 (1981) 311-328.
 
[11]  A.W. Leissa, J.K. Lee, A.J. Wang, Rotating blade vibration analysisusing shells, Journal of Engineering for Power, Transactions of American Society of Mechanical Engineers 104 (1982) 296-302.
 
[12]  T. Tsuiji, M. Shugyo, T. Yamashita, Free vibration analysis ofrotating thin twisted plates, Transactions of Japan Society of Mechanical Engineers 61 (C) (1995) 4575-4586 (in Japanese).
 
[13]  X.X. Hu, T. Tsuiji, Free vibration analysis of rotating twistedcylindrical thin panels, Journal of Sound and Vibration 222. 1999 209-224.
 
[14]  Lo,H.,A nonlinear problem in the bending vibration of a rotatingbeam, J.Appl.Mech., Trans.ASME, 1952, 19, p.461.
 
[15]  Boyce, W.e. Diprima, R.C. and andleman, G.H., Vibrations of rotating beams of constant sections,proc.and Us Natl.cong.Appl,Mech.,ASME, 1954,p.165.
 
[16]  Schilhansl, M.J., Bending frequency of arotatingcantileverbeam, J.Appl.Mech., ASME, 25, 1958, p. 28.
 
[17]  Hirsch,G.,Investigation of vibration in bending of rotating turbineblades on non-rigid support, 1958, Jahrbuck Wissens chart., GessellschLuftahrt p. 174.
 
[18]  HorwayG.,chord wise and beam wise bending of hinged rotorblades, J Aero. Sci., 1948, 15, p.497.
 
[19]  Niordson, F., Vibration of turbine blades with loose hingesupports, 1954, Engr.Digest, 15, p. 359.
 
[20]  Garland C.F.,The normal modes and vibrations of beams havingnoncollinearelasticandmassaxes,J.appl.Mech.,Trans.ASME, 1940,p.a-97.
 
[21]  Kapuria S, Alam N., Efficient layerwise finite elementmodel for dynamic analysis of laminated piezoelectric beams, Computer Methods in Applied Mechanics and engineering, 2006, Vol. 195, pp. 2742-2760.
 
[22]  Yõldõrõm V, Kõral E., Investigation of the rotary inertia and sheardeformation effects on the out-of-plane bending and torsionalnatural frequencies of laminated beams, Composite Structures, Vol. 49, 2000, pp. 313-320.
 
[23]  Khdeir A.A., Reddy J.N., Free vibration of cross-ply laminatedbeams with arbitrary boundary conditions, International Journal of Engineering Science, 1994, Vol. 32, pp. 19711980.
 
[24]  Crawley, E. F. The Natural Modes of Graphite/Epoxy CantileverPlates and Shells, Journal of Composite Materials, 1979, Vol. 13, pp. 195-205.
 
[25]  Wang, J. T. S., Shaw, D. and Mahrenholtz, O. Vibration of RotatingRectangular Plates, Journal of Sound and Vibration, Vol. 112, No. 3, 1987, pp. 455-468.
 
[26]  Shaw, D., Shen, K. Y. and Wang, J. T. S. Flexural Vibration of Rotating Rectangular Plates of Variable Thickness, Journal of Sound and Vibration, 1988 Vol. 126, No. 3, pp. 373-385.
 
[27]  Qatu M. S. and Leissa A. W. Vibration studies for Laminated Composite Twisted Cantilever Plates, International Journal of Mechanical Sciences, 1991, Vol.33, pp. 927-940.
 
[28]  BirG.S, and Migliore P.G. Computerized method for preliminary structural design of composite wind turbine blades [J]. Journal of solar energy engineering, 2001, vol. 123, iss. 4, pp. 372-381.
 
[29]  Alejandro D. Otero, and Fernando L. Ponta. Structural analysis of wind turbine blades by a generalized Timoshenko beam model [J]. Journal of Solar Energy Engineering, 2010, vol. 132, pp. 151-158.
 
[30]  Liu Wang-yu, Zhang Hai-quan, and Zeng lin. Reliability analysis of bionic wind turbine blades based on the response surface methodology [J]. Journal of Solar Energy Engineering., 2010, vol. 31, iss. 9, pp. 1204-1208.
 
[31]  Shakeri M, Yas MH, Gol MG, Optimal stacking sequence of laminated cylindrical shells using genetic algorithm, MechAdv Mater Struct, 2005, 305-312.