ISSN (Print): 2373-6690

ISSN (Online): 2373-6704


Editor-in-chief: Maria TSAKIRI

Content: Volume 2, Issue 2


Origin and Evolution of the Formation of the Nyong Series in the Western Border of the Craton

1Laboratory of Petrology and Structural Geology, University of Yaoundé I, P.O. Box 3412, Cameroon

2Department of Geology, University of Buea, South West Region, P.O. Box 63 Buea, Cameroon

3Department of Geology, University of Dschang, West Region, P.O. Box. 67 Dschang, Cameroon

4Institute of Mineralogy and Geochemistry, University of Lausanne, Switzerland

Journal of Geosciences and Geomatics. 2014, 2(2), 62-75
DOI: 10.12691/jgg-2-2-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Ndema Mbongue J. L., Ngnotue T., Ngo Nlend C. D., Nzenti J. P., Cheo Suh E.. Origin and Evolution of the Formation of the Nyong Series in the Western Border of the Craton. Journal of Geosciences and Geomatics. 2014; 2(2):62-75. doi: 10.12691/jgg-2-2-4.

Correspondence to: Nzenti  J. P., Laboratory of Petrology and Structural Geology, University of Yaoundé I, P.O. Box 3412, Cameroon. Email:


The Nyong series at Edéa and Eseka area is located in the western edge of the Congo Craton and comprise three distinguish rock units namely: metasedimentary rocks unit (schists, garnet-rich micaschist); meta-igneous rocks unit (pyroxene-rich gneiss, garnet-rich charnockitic gneiss, charnockitic gneiss, biotite-rich gneiss, amphibole and biotite-rich gneiss, garnet and amphibole-rich gneiss, amphibolite, pyribolite, pyrigarnite, garnet-rich amphibolite) and a unit of the rocks resulting from the melt (migmatite, TTG) displaying quartzo-feldspathic segregation arising from either in situ partial melting or injection along dykes or ductile shear zones. The meta-igneous rocks derived from (i) intermediate to basic tholeiitic rocks with high TiO2 (0.6-3.47%) contents compatible with the extensive orogenic domain and (ii) calc-alkaline protolith display high FeO*/MgO (1.5-3.31) ratios which is in accordance with the typical domain of collisional orogeny. The chemical patterns of metasedimentary rocks are those of shale. The average Nb/Y (0.004) ratio and the fractioned REE patterns suggest that the contribution of alkaline vulcanite and a continental environment can be envisaged for these metasedimentary rocks.



[1]  Pouclet, A., Tcahameni, R., Mezger, K., Vidal, M., Nsifa, E.N., Shang, C. and Penaye J. Archaean crustal accretion at the Northern border of Congo Craton (South Cameroon):The charnockite-TTG ling. Bulletin Société Géologique France, 178, 331-342, 2007
[2]  Toteu, S.F., Penaye, J., Van Schmus, W.R., and Michard A. Preliminary U/Pb and Sm/Nd geochronologic data on the North-Central Cameroon: contribution of an Archaean and Paleoproterozoic crust to the edification of an active domain of the Pan-African orogeny. Comptes Rendus de l’Académie des Sciences Paris, 319, 1519-1524,1994
[3]  Shang, C.K., Liégeois, J.P., Satirb, M., Frisch, W. and Nsifa, E.N. Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo Craton, Southern Cameroon: Evidence for Pb-loss due to non-metamorphic causes Gondwana Research, 18 (2-3), 337-355, 2010.
[4]  Goodwin, A.M. Precambrian geology — the dynamic evolution of the continental crust. Academic Press. Harcourt Brace Jovanovich Publishers, 666 pp, 1991.
[5]  Maurizot, P., Abessolo, A, Feybesse, J.L., Johan V. and Lecomte P. Etude et prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985. Rapport BRGM, Orléans 85, CMR 066, 274 pp, 1986.
Show More References
[6]  Nedelec, A., Nsifa, N.E. and Martin, H. Major ant trace element geochemistry of the Archaean Ntem plutonic complex (South Cameroon): petrogenesis and crustal evolution. Precambrian Research, 47, 35-50, 1990.
[7]  Nzenti, J.P., Barbey, P., Macaudiere, J. and Soba, D. Origin and evolution of the late Precambrian high-grade Yaounde gneisses (Cameroon). Precambrian Research, 38, 91-109, 1988.
[8]  Barbey, P., Macaudière, J., Nzenti, J. P. High pressure dehydration melting of metapelites: evidence from migmatites of Yaounde (Cameroon). Journal of Petrology 31, 401-427, 1990.
[9]  Mvondo, H., Den Brok, S. W.J. and Mvondo Ondoa, J. Evidence for extension and exhumation of the Yaounde nappe (Pan-African fold belt, Cameroon). Journal of African Earth Sciences 36, 215-231, 2003.
[10]  Toteu, S.F., Penaye, J., Deloule, E., Van Schmus, W.R. and Tchameni, R.. Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: insights from U/Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon). Journal of African Earth Sciences 44, 428-442, 2006.
[11]  Delhal, J. and Ledent, D. Musée Royal Afrique Centrale. Tervuren. Rapp. Ann. 1974, pp. 71-76, 1975.
[12]  Lasserre, M., Soba, D. Age Libérien des granodiorites et des gneiss à pyroxènes du Cameroun Méridional. Bulletin BRGM 2 (4), 17-32, 1976.
[13]  Tchameni, R., Pouclet, A., Mezger, K., Nsifa, N.E. and Vicat, J.P. Monozircon and Sm-Nd whole rock ages from the Ebolowa greenstone belts: Evidence for the terranes older than 2.9Ga in the Ntem Complex (Congo craton, South Cameroon). Journal of Cameroon Academic of Sciences, 4, 213-224, 2004.
[14]  Toteu, S.F., Van Schmus, W.R., Penaye, J., Michard, A. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-PanAfrican history of Central Africa. Precambrian Research, 108, 45-73, 2001.
[15]  Lerouge, C., Cocherie, A., Toteu, S.F., Penaye, J., Milesi, J.P., Tchameni, R., Nsifa, N.E., Fanning, C.M. and Deloule, E. SHRIMP U/Pb zircon age evidence for paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-western Cameroon: consequences for the eburnean-transamazonian belt of NE Brasil and central Africa. Journal of African Earth Sciences, 44, 413-427, 2006.
[16]  Kretz R. Symbols for rock-forming minerals. American mineralogist, 68, 277-279, 1983.
[17]  Feybesse, J.L., Johan, V., Maurizot, P. and Abessolo, A. Evolution tectono métamorphique libérienne et éburnéenne de la partie NW du Craton Zaïrois (SW Cameroun). In G. Matheis and H. Schandelmeier (Editors), Current research in African Earth Sciences. Balkema, Rotterdam, 9-12, 1987.
[18]  Shang, C.K., Satirb, M., Siebel, W., Taubald, H., Nsifa, E.N., Westphal, M. and Reitter E. Genesis of K-rich granitoids in the Sangmelima region, Ntem complex (Congo craton), Cameroon. Terra Nostra,5, 60-63, 2001.
[19]  Shang, C.K., Satirb, M. Siebelb, W. Nsifa, N.E. Taubald, H., Liegeois, J.P. and Tchoua F.M. TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb-Sr and Sm-Nd systematics: case of the Sangmelima region, Ntem complex, Southern Cameroon. Journal of African Earth Sciences, 40, 61-79, 2004 a.
[20]  Shang, C.K., Siebel, W., Satirb, M., Chen, F. and Mvondo, O.J. Zircon Pb-Pb and U-Pb systematics of TTG rocks in the Congo craton: constraints of crustal formation, crystallization and Pan-African lead loss. Bulletin of Geosciences, 79, 205-219, 2004 b.
[21]  Shang, C.K., Satirb, M., Nsifa, E.N., Liegeois, J.P., Siebel, W., Taubald, H. Archaean high-K granitoids produced by remelting of the earlier Tonalite-Trondhjemite-Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. International Journal of Earth Sciences, 96, 817-842, 2007.
[22]  De la Roche, H. Sur l’existence de plusieurs faciès géochimiques dans les schistes paléozoïques des Pyrénées lychonnaises. Geol. Rundsch., 55, 274-301, 1965.
[23]  Nance, W.B. and Taylor, S.R. Rare earth element patterns and crustal evolution I. Australian post-Archean sedimentary rocks. GCA, 40, 1539, 1976.
[24]  McLennan, S.M. Trace element geochemistry of sedimentary rocks: implications for the composition and Evolution of the continental crust. Ph.D. Thesis, Australian National University. 1981.
[25]  Taylor, S.R. and Mc Lennan, S.M. The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell Science Publications, 312p, 1985.
[26]  Nzenti, J.P., Tanko Njiosseu, E.L. and Nzina N.A. The metamorphic evolution of the Paleoproterozoic high grade Banyo gneisses (Adamawa, Cameroon, Central Africa). Journal of African of Cameroon Academy of Sciences, 7 (2), 95-109, 2007.
[27]  Tchaptchet, T.D., Nzenti, J.P, Njiosseu, E.L., Ngnotué, T. and Ganno, S. Neoproterozoic metamorphic events in the kekem area (Central domain of the Cameroon North Equatorial Fold Belt): P-T data. Journal of the Cameroon Academy of Sciences, 8, N°2/3, 91-105, 2009a.
[28]  Tchaptchet, T.D., Schulz, B. and Nzenti, J.P. Electron microprobe dating and thermobarometry of Neoproterozoic metamorphic events in the Kekem area, Central African Fold Belt of Cameroon. Nueue Jahbur fűr Mineralogy Abh., 186/1, 95-109, 2009 b.
[29]  Danguene, P.E.L. Géologie de la région de Bossamgoa-Bossembélé au Nord-Ouest de la République Centrafricaine (chaîne panafricaine Nord Equatorial): Pétrogenèse, structurogenèse et géochronologie. Unpublished Ph.D Thesis, Université de Yaoundé I, 121 p, 2012.
[30]  Ngnotué, T., Ganno, S., Nzenti, J.P., Schulz, B., Tchaptchet Tchato, D. and Suh Cheo, E. Geochemistry and geochronology of Peraluminous High-K granitic leucosomes of Yaoundé series (Cameroon): evidence for a unique Pan-African magmatism and melting event in North Equatorial Fold Belt. International Journal of Geosciences, 3, 525-548, 2012.
[31]  Goldschimidt, H. J. Geochemistry, Clarendon Press, 1954.
[32]  Migdisov, A. A. On the titanium-aluminium ratio in sedimentary rocks. Geochim. U.S.S.R., 2, 178-194, 1960.
[33]  Nzenti J. P., Barbey P., Tchoua F.M. Evolution crustale au Cameroun: éléments pour un modèle géodynamique de l’orogenèse néoproterozoïque. In Géologie et environnements au Cameroun, Vicat et Bilong editors, collection GEOCAM 2, 397-407, 1999.
[34]  Ngnotué T., Nzenti J. P., Barbey P. and Tchoua, F. M. The Ntui-Betamba high-grade gneisses: a Northward extension of the Pan-African Yaounde gneisses in Cameroon. Journal of African Earth Sciences, 31, 369-381, 2000.
[35]  Tchaptchet, T.D. Geology of the Kekem area (Cameroon central domain): Metamorphic Petrology, P-T-t path, EMP, LA-ICPMS dating and implications for the geodynamic evolution of the Pan-African North Equatorial fold belt. Unpublished Ph. D thesis, University of Yaoundé 1, 110 pp, 2011.
[36]  Bhatia, M.R. and Crook, A.W. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contribution to Mineralogy and Petrology, 92, 181-193, 1986.
[37]  Shibata,T., Thompson, G. and Frey, F.A. Tholeiitic and alkali basalts from the middle Atlantic ridge at 43°N. Contribution to Mineralogy and Petrology, 70, 127-142, 1979.
[38]  Leeman, W.P., Budahan, J.P., Gerlach, D.C., Smith, D.R. and Powell, B.N. Origin of Hawaiian tholeiites : trace element contraints. American Journal of Science, , 794-819, 1980.
[39]  Pearce, J.A. and Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, 290-300, 1973.
[40]  Miyashiro A. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274, 321-355, 1974.
[41]  Evensen, N.M., Hamilton, P.J. and O’Nions, R.K. Rare earth abundances in chondritic meteorites. Geochemical and Cosmochemical Acta, 4, 1199-1212,1978.
[42]  Thompson, R.N., Morrisson, M.A., Hendry, G.L. and Parry, S.J. An assessment of the relative role of crust and mantle in magma genesis. An element approach. Philosophic Transaction Royal Society London, A 310, 549-590, 1984.
[43]  Ama Salah, I., Liegeois, J.P. and Pouclet, A. Evolution d’un arc insulaire océanique birimien précoce au Liptako nigérian (Sirba): géologie, géochronologie et géochimie. Journal of African Earth Sciences, 22 (3), 235-254, 1996.
[44]  Ayuso, R. and Arth, J.G. The Northeast Kingdom batholith, Vermon: magmatic evolution and geochemical constraints on the origin of Acadian granitic rocks. Contribution to Mineralogy and Petrology, 111 (1), 1-23, 1992.
[45]  Bertrand, J.M., Dupuy, C., Dostal, J. and Davidson, I. Geochemistry and geotectonic interpretation of granitoids from Central Iforas (Mali, West Africa). Precambrian Research, 26 (3-4), 265-283, 1984.
[46]  Chebeu, C., Ngo Nlend, C.D., Nzenti, J.P. and Ganno, S. Neoproterozoic High-K Calc-alcaline granitoids from Bapa-Batié, North Equatorial Fold Belt, Central Cameroon: petrogenesis and geodynamic significance. The Open Geology Journal, 4, 112-131, 2011.
[47]  Djouka-Fonkwe, M.L., Schulz, B., Tchouankoué, J.P., and Nzolang, C. Geochemistry of the Bafoussam Pan-African I- and S-type granitoids in western Cameroon. Journal of African Earth Sciences, 50, 148-167, 2008.
[48]  Duarte, B.P., Valente, S.C. and Campos Neto, M.C. Petrogenesis of the orthogneisses of the Mantiqueira Complex, Central Ribeira Belt, SE Brazil: an Archean to basement unit reworked during the Pan-African orogeny. Gondwana Research, 7, 437-450, 2004.
[49]  Ferré, E.C., Déléris, J., Bouchez, J.L., Lar, A.U. and Peucat, J.J. The Pan-African reactivation of contrasted Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the Geological Society of London, 153, 719-728, 1996.
[50]  Ferré, E.C., Caby, R., Peucat, J.J., Capdevila, R. and Monié, P. Pan-African, postcollisional, ferro-potassic granite and quartz-monzonite plutons of Eastern Nigeria. Lithos, 45, 255-279, 1998.
[51]  Heilbron, M., Machado, R. and Figueiredo, M. Lithogeochemistry of the Paleoproterozoic Granulites of the Bom Jardim de Minas (MG) Vassouras (RJ) Region, Central Segment of Ribeira Belt. Revista Brasileirade Geociências, 27, 83-98, 1997.
[52]  Heilbron, M., Duarte, B.P. and Nogueira, J.R. The Juiz de Fora complex of the Central Ribeira belt, SE Brazil: a segment of granulitic crust thrusted during the Pan-African. Gondwana Research, 1, 373-382, 1998.
[53]  Nguiessi, TC., Nzenti, J.P., Nsifa, E.N., Tempier, P. and Tchoua, F.M. Les granitoïdes calco-alcalins, syn-cisaillement de Bandja dans Nord-Equatoriale au Cameroun. Comptes Rendus de l’Académie des Sciences, 325, 95-101, 1997.
[54]  Nogueira, J.R., Choudhuri, A. Geotectonic models and geologic evolution of the high-grade gneiss terranes of Juiz de For a (MG), Brazil. Revista Brasileira de Geociências, 30, 169-173, 2000.
[55]  Nzenti, J.P., Barbey, P., Bertrand, J.M.L. and Macaudière, J. La chaîne panafricaine au Cameroun: cherchons suture et modèle. In S.G.F. édit., 15e réunion des Sciences de , Nancy, France, 99, 1994.
[56]  Nzenti J. P., Kapajika B., Worner G. and Lubala Ruananza, T. Synkinematic emplacement of granitoids in a pan-african shear zone in central Cameroon. Journal of African Earth Sciences, 45, 74-86, 2006.
[57]  Nzenti J.P., Abaga B., Suh C.E., Nzolang C. Petrogenesis of peraluminous magmas from the Akum-Bamenda Massif, Pan-African Fold Belt, Cameroon. International Geology Review, iFirst, 1-29, 2010.
[58]  Nzolang, C., Kagam, H., Nzenti, J.P. and Holtz, F. Geochemistry and preliminary Sr-Nd isotopic data on the Neoproterozoic granitoids from the Bantoum area, West Cameroon: evidence for a derivation from a paleoproterozoic to Archaean crust. Polar Geosciences, 16, 196-226, 2003.
[59]  Tagne-Kamga, G. Petrogenesis of Neoproterozoic Ngondo plutonic complex (Cameroon West central Africa): a case of late collisional ferro-potassic magmatism. Journal of African Earth Science, 36, 149-171, 2003.
[60]  Tanko Njiosseu, E.L., Nzenti, J.P., Njanko, T., Kapajika, B., Nedelec, A. New U-Pb Zircon ages from Tonga (Cameroon): coexisting Eburnean Transamazonien (2.1 Ga) and Pan-African (0.6 Ga) imprints. Comptes Rendus de l’Académie des Sciences de Paris, 337, 551-562, 2005.
[61]  Nzina, N.A., Nzenti, J.P., Tanko Njiosseu, E.L., Ganno, S. and Ngnotue, T. Synkinematic ferro-potassic magmatism from the Mekwene-Njimafofire Foumban Massif, along the Foumban-Banyo shear zone in central domain of Cameroon Pan-African fold belt. Journal of Geology and Mining Research, 2 (6), 142-158, 2010.
[62]  Le Bas, M.J., Le Maître, R.W., Streckeisen, A. and Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750, 1986.
[63]  Cox, K.G., Bell, J. D. and Pankhurst, R.J. The Interpretation of Igneous Rocks, George Allen & Unwin, London, United Kingdom 445 pp, 1979.
[64]  Sylvester, P.J. Post-collisional alkaline granites. Journal of Geology, 97, 261-280, 1989.
[65]  Bachelor, R.A., Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48, 43-55, 1985.
[66]  Nzenti, J.P. Neoproterozoic alkaline metamorphic igneous rocks from the Pan-African North Equatorial fold belt (Yaounde, Cameroon): biotites and magnetite rich pyroxenites. Journal of Africa Earth Sciences, 26, 1, 37-47, 1998.
[67]  Nzenti, J.P., Ngako, V., Kambou, R., Penaye, J., Bassahak, J. and Njel, O.V. Structures régionales de la chaîne panafricaine du Nord Cameroun. Comptes Rendus de l’Académie des Sciences Paris, 315, II, 209- 215, 1992.
[68]  Nedelec A., Macaudiere J., Nzenti J. P., and Barbey P. Evolution structurale et métamorphisme des schistes de Mbalmayo (Cameroun). Informations pour la structure de la zone mobile panafricaine d'Afrique centrale au contact du craton du Congo. Comptes Rendus de l’Académie des Sciences, Paris, 303, II, 75-80, 1986.
[69]  Penaye, J., Toteu, S.F., Michard, A., Van Schmus, W.R. and Nzenti, J.P. U/Pb and Sm/Nd preliminary geochronologic data on the Yaoundé series, Cameroon: reinterpretation of granulitic rock as the suture of the collision in the « Centrafricain » belt. Comptes Rendus de l’Académie des Sciences, Paris, 317, 789-794, 1993.
[70]  McDonough, W.F. Constraints on the composition of the lithospheric mantle. Earth Planetary Science Letters, 101, 1-18, 1990.
[71]  Heaman, L.M., Le Cheminant, A.N. and Rainbird, R.H. Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the brak-up of Laurentia. Earth Planetary Science Letters, 109, 117-131, 1992.
[72]  Guiraud, R. and Bosworth, W. Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: synthesis and implications to plate-scale tectonics, Tectonophysics, 282, 39-82, 1997.
[73]  Porada, H. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. Precambrian Research, 44, 103-136, 1989.
[74]  Maurin, J.C. and Guiraud, R. Basement control in the development of the Early Cretaceous West and Central African Rift System. Tectonophysics, 228, 81-95, 1993.
[75]  Tembo, F., Kampunzu, A.B., and Porada, H. Tholeiitic magmatism associated with continental rifting in the Lufilian Fold Belt of Zambia. Journal of African Earth Sciences, 28 (2), 403-425, 1999.
[76]  Ngounouno I., Déruelle B., Guiraud R., Vicat, J.P. Magmatisme tholéiitique et alcalin des demi-grabens crétacés de Mayo Oulo-Léré et de Babouri-Figuil (Nord du Cameroun-Sud du Tchad) en domaine d’extension continentale. Comptes Rendus de l’Académie des Sciences Paris, 333, 201-207, 2001.
[77]  Vicat, J.P., Ngounouno, I. and Pouclet, A. Existence de dyke doléritiques anciens à composition de tholéiites continentale au sein de la province alcaline de la ligne du Cameroun. Implication sur le contexte géodynamique. Comptes Rendus de l’Académie des Sciences Paris, 332, 243-249, 2001.
[78]  Tanko Njiosseu, E.L. Géologie de la région de Tonga dans la partie Sud du domaine centre de la chaîne au Cameroun: évolution métamorphique, géochimie et géochronologie. Unpublished Ph. D thesis, University of Yaoundé 1, 104 p., 2012.
Show Less References


Tectono-Structural Overviews of Iron Formation of North Odisha, India

1Department of Geology, Utkal University, Bhubaneswar

Journal of Geosciences and Geomatics. 2014, 2(2), 57-61
DOI: 10.12691/jgg-2-2-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Devananda Beura. Tectono-Structural Overviews of Iron Formation of North Odisha, India. Journal of Geosciences and Geomatics. 2014; 2(2):57-61. doi: 10.12691/jgg-2-2-3.

Correspondence to: Devananda  Beura, Department of Geology, Utkal University, Bhubaneswar. Email:


The famous iron formation of north Odisha belongs to the Archaean schist belt comprising of the litho assemblages including the Banded Iron Formation (BIF), Iron Ore and associated rocks. Major iron formations are confined to three different provinces located in the peripheral region encircling the granite complex, which is designated as the North Odisha Iron Ore Craton (NOIOC). These three iron ore belts are intra-cratonic basins that act as depository sites for the BIF, iron ore and associated rocks. The tectonic setting is correlated with the iron ore orogeny and suffered post tectonic deformations. The rocks of all the three belts have undergone multiple phases of deformation including folds and faults. The fold structures in successive phases are superimposed to produce numerous interference patterns.



[1]  Acharya, S., “Stratigraphy and structural evolution of the rocks of Iron Ore Basin in Singhbhum-Odisha Iron Ore Province”, in Crustal Evolution of the Indian shield and its bearing on Metallogeny, Indian Journal of Earth Science Seminar Volume, 19-28.
[2]  Acharya, S., “Some observations on parts of the Banded Iron-Formations of Eastern India”, in Pres. Address, 87th session, Ind. Sc. Cong. Ass., 1-34.
[3]  Acharya, S. “The Daitari-Tomka basin – its structural & stratigraphic evolution and genesis of assoc iron ore”, Ind. Jour Geol., 74. 49-81. 2002.
[4]  Beura, D. and Singh, P. “Geological setting and mineral deposits of Archaean schist belt- A case study around Badampahar belt, north Orissa, India”, in Int. Sem., Khon Ken Uni. Thailand, 326-329.
[5]  Beura, D., Singh, P. and Acharya, S. “BIF and iron ore: an academic perspective and commercial vision”, Vistas in Geol. Res, U.U. Spl. Pub., 6. 71-73. 2007.
Show More References
[6]  Beura, D. “Petrographic characterization of BIF of Archaean Greenstone Belt- A case study around Thakurani sector of Bonai-Keonjhar belt, North Orissa, India”, Vistas in Geol. Research, U.U. Spl. Pub., 7. 76-85. 2008.
[7]  Beura, D. and Singh, P. “Structural Disposition of Multiphase Deformational Episodes of the Archaean Schist Belt with Special Reference to Badampahar Area, North Odisha, India”, International Journal of Earth Sciences and Engineering International Journal of Earth Sciences and Engineering, 02.196-207. July 2009.
[8]  Beukes, N.J “Sedimentology of the Kuruman and Griquatown iron- formation, Transvaal Supergroup, Griqualand west, south Africa”, Prec. Res., 24. 47-84. 1984.
[9]  Gaal, G. “Tectonic evolution of Fenno-Scandian (Baltic) Shield: Comparison of Archaean and Proterozoic Geology with emphasis of granite-greenstone terrains (Abs)”, in 28th Int. Geol. Cong. Washington D. C., 1. 521.
[10]  Jones, H. C. “The iron ores deposits of Bihar and Orissa”, Geol. Surv. India Memoir, 63. 375. 1934.
[11]  Morris, R. C. and Horwitz, R. C. “The origin of iron-formation – rich Hamersley Group of Western Australia deposition on a platform”, Precambrian Res., 21. 273-297. 1983.
[12]  Mukhopadhyay, D. “Proterozoic crustal evolution in Singhbhum, eastern India. (Abs)”, in 28th Int. Geol. Cong. Washington D. C., 2. 279.
[13]  Radhakrishna, B.P. “Archaean granite-greenstone terrain of the South Indian Shield. Mem”, Geol. Soc. India, 4. 1-46. 1983.
[14]  Sawkins, F. J., Metal Deposits in Relation to Plate Tectonics. Ed. II, Springer-Verlag, 1990.
Show Less References


Geological and Geotechnical Investigation of Gully Erosion along River Bosso, Minna, North Central Nigeria

1Geology Department, Federal University of Technology, Minna, Nigeria

2Earth Sciences Department, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

Journal of Geosciences and Geomatics. 2014, 2(2), 50-56
DOI: 10.12691/jgg-2-2-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
I. A. Okunlola, I. A. Abdulfatai, Kolawole L. L., Amadi A. N.. Geological and Geotechnical Investigation of Gully Erosion along River Bosso, Minna, North Central Nigeria. Journal of Geosciences and Geomatics. 2014; 2(2):50-56. doi: 10.12691/jgg-2-2-2.

Correspondence to: I.  A. Abdulfatai, Geology Department, Federal University of Technology, Minna, Nigeria. Email:


Geological and geotechnical investigation along River Bosso, Minna to determine the soil characteristics contributing to gully erosion in the area was done. Field mapping showed that granite, granite-gneiss and schist of Basement complex suite underlie the area and granite is more prominent than granite-gneiss and schist. The index test results for the natural moisture content ranges from 11.19 – 24.08%; the plasticity index ranges from 0 – 5.21%; the sieve analysis result shows that coefficient of uniformity, Cu ranges from 3.37 and 29.00 while coefficient of curvature, Cc ranges from 0.17 – 0.89; the undisturbed bulk density is between 0.87 – 1.11kg/m3 and the compacted bulk density is between 1.25 – 1.49kg/m3; the specific gravity ranges from 2.16 - 2.67. For the performance test; the compaction result shows that the optimum moisture content (OMC) ranges from 8.90 – 14.85% while the maximum dry density (MDD) ranges from 1.880 - 2.09mg/m3; the triaxial shear test result shows that the angle of internal friction is between 60 - 90 and the cohesion ranges from 28 – 42kg/m2; the permeability is between 1.42 × 10-3 and 1.93 × 10-3 cm/sec. The relatively high sand content and low plasticity of the soil is susceptible to erosion which is attributed to the dominant granitic rock of the study area with high affinity for gully erosion. The anthropogenic factors found to have contributed to gully growth are farm practice, mining activities and residential buildings on the flood plain.



[1]  Ajibade, A. C., Geotectonic evolution of the Zungeru Region, Nigeria. Unpublished Ph.D. Thesis, University of Wales, Aberystwyth, 1980.
[2]  Alao, D. A., & Opaleye, T. S., Geotechnical analysis of slope failure of a Kaolin quarry at Kurra, Jos North-central Nigeria. Nigerian Mining and Geosciences Society Journal, 2011.
[3]  Ara, A., Naresh, S., Raymond, C. & George, M., Geotechnical and Foundation Engineering, Module 1 – Subsurface Investigation. Federal Highway Administration, Virginia, 1997, 7-8.
[4]  Brian, V., Laboratory Work in Civil Engineering Soil Mechanics, Crosby Lockwood Staples, Norwich, Great Britain, 1978, 44.
[5]  Carter M. & Bentley S. P., Correlations of soil properties. Pentech, 1991, 130.
Show More References
[6]  Das B. M., Principles of Geotechnical Engineering, Fifth edition, 2006, 593.
[7]  Egboka, B. C. E. & Nwankwor, E. I., The hydrogeological and geotechnical parameters as causative agents in the generation of erosion in the rain forest belt of Nigerian. Journal of Africa Earth Science, 3 (4), 1986, 417-425.
[8]  Grossman, R. B. & Reinsch, T. G.,. Method of Soil Analysis, Soil Science Society of America, Incoperation. Madison, Winconsin, USA, 2002.
[9]  Hudec P., Simpson F., Akpokodje E., & Umenweke M., Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC), April 2-6, 2006, Reno, NV, USA, 2006, 671-679.
[10]  Ishaku, J. M., Adekeye, J. I. D. & Negro, S. S., The Hydrogeological and Geotechnical characteristics of Rock Materials that Aid Gully Erosion in Lassa Area of Borno State, North Eastern Nigeria, Water Resources – Journal of Nigeria Association of Hydrogeology (NAH), Volume 13, November, 2002, 53.
[11]  Nwajide, C. S. & Hogue, H., Gullying processes in South Eastern Nigeria. The Nigerian Field 44(2), 1979, 64-74.
[12]  Obiefuna, G. I., Nur, A., Baba, A. U., & Bassey, N. E., Geological and Geotechnical Assessment of Selected Gully Sites, Yola Area, North-East Nigeria. Journal of Environment Hydrology 7, 1999, 11-12.
[13]  Onwuemesi, A. G. & Egboka, B. C. E., Implication of Hydrogeophysical Investigations of the Agulu-Nanka Gullies Area of Anambra State of Nigeria. Journal of African Earth Science, 1991, 13, 519.
[14]  O’Flaherty., C. A., Highway engineering, Vol. 2. Edward Arnold Publishers, London. UK, 1988.
Show Less References


Environmental Effects of Sand and Gravel Mining on Land and Soil in Luku, Minna, Niger State, North Central Nigeria

1Department of Geology, Federal University of Technology, Minna, Nigeria

2Department of Geology and Mining, Nasarawa State University, Keffi, Nigeria

Journal of Geosciences and Geomatics. 2014, 2(2), 42-49
DOI: 10.12691/jgg-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Ako T. A., Onoduku U. S., Oke S. A., Essien B. I., Idris F. N., Umar A. N., Ahmed A. A.. Environmental Effects of Sand and Gravel Mining on Land and Soil in Luku, Minna, Niger State, North Central Nigeria. Journal of Geosciences and Geomatics. 2014; 2(2):42-49. doi: 10.12691/jgg-2-2-1.

Correspondence to: Ako  T. A., Department of Geology, Federal University of Technology, Minna, Nigeria. Email:


The increase in the demand for sand and gravel for construction and other purposes such as flood control has placed immense pressure on the environment where sand and gravel resources occur. This study was carried out to determine the environmental effects of sand and gravel mining in Luku, North central Nigeria, using field observations and laboratory analysis of soil samples. Field work was carried out in the area to determine the physical environmental effects of mining while soil samples were analysed at the National Geo-science Research Laboratory (NGRL) of Nigerian Geological Survey Agency (NGSA), Kaduna for trace elements using X-Ray Fluorescence (XRF) method. Result of the field observations shows that destruction of landscape, reduction of farm and grazing land, collapsing river banks, deforestation and water pollution are the environmental effects that result due to sand and gravel mining in the area. Result of the chemical analysis shows that average concentrations of Pb, As, Cu, Ni, Cd, Hg, Ag and Zr are 47.8, 4.17, 50.9, 32.7, 2.48, 0.1, 0.8 and 496.1ppm respectively. These concentrations are higher than the average standard concentrations of these elements found in the upper continental crust. These higher concentrations may have very negative effects on plants and animals in the area and cause diseases such as brain and kidney damage, lung irritation, cardiac abnormality and event death to plants and animals.



[1]  Langer, W.H. 2003. A general overview of the technology of in-stream mining of sand and Gravel resources, associated potential environmental impacts, and methods to control Potential Impacts. USGS 02-153p
[2]  Kondolf, G.M, Williams, J.G, Horner, T.C. and Millan, D. 2008. Assessing physical quality of Spawning habitat American fisheries society symposium 65:000-000.
[3]  Kondolf, G.M. (1998a).Environmental effects of aggregate extraction from river channels and floodplains. In: Aggregate resources: a global perspective (P.T. Bobrowsky, ed.), pp. 113-129. A.A. Balkema, Rotterdam. 470 pp.
[4]  Mathada. H and Kori. E (2012). An Evaluation of Sand and Gravel Extraction in Nzhelele River Valley, Limpopo Province of South Africa. 3rd International Conference on Biology, Environment and Chemistry IPCBEE vol.46 (2012) © (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. Vol.46. 28.
[5]  Musah, A.J (2009). Assessment of Sociological and Ecological Impacts of Sand and Gravel mining – a case study of east Gonja district (Ghana) and Gunnarsholt (Iceland), unpublished final project environmental protection agency Ghana.
Show More References
[6]  Aromolaran, A.K (2012). Effects of Sand Mining activities on Land. 6(1): 41-49p.
[7]  Steve Blodgett, M. S. (2004). Environmental Impacts of aggregate and stone mining.
[8]  Ezeaku, P. I. (2011). Evaluating the influence of open cast mining of solid minerals on soil, Land use and livelihood systems in selected areas of Nasarawa State, North-Central Nigeria. Journal of Ecology and the Natural Environment. Vol. 4 (3), 62-70.
[9]  Wedepohl, K. H. (1995).The Composition of the Continental Crust. Geochim Cosmochim Acta 59 (7), 1217-1232.
[10]  Taylor, S. R. and McLennan, S. M (1985). The Continental Crust: its Composition and Evolution. Blackwell Scientific Publication, Oxford.
[11]  Http:// www.
[12]  Bunnell J. E., Finkelman R. B., Centeno J. A. and Selinus O. (2007). Medical Geology: a globally emerging disciple. Geologica Acta, Vol.5, No 3, 273-281.
Show Less References