Journal of Geosciences and Geomatics
ISSN (Print): 2373-6690 ISSN (Online): 2373-6704 Website: http://www.sciepub.com/journal/jgg Editor-in-chief: Maria TSAKIRI
Open Access
Journal Browser
Go
Journal of Geosciences and Geomatics. 2018, 6(3), 138-146
DOI: 10.12691/jgg-6-3-4
Open AccessArticle

A Review of Granitoid-Related Gold Mineralization Styles and Characteristics of the Neoproterozoic Eastern Gold Districts, Cameroon and the Role of Fluid Inclusion Studies in Elucidating the Genesis

R.B. Ngatcha1, , O.A. Okunlola2, C.E. Suh3, E.R. Eben Mboe4 and C. Fuanya1

1Department of Geosciences, Pan African University Life and Earth Sciences Institute (PAULESI), University of Ibadan, postcode 200281, Ibadan, Nigeria

2Department of Geology, Faculty of Science, University of Ibadan, postcode 200281, Ibadan, Nigeria

3Department of Geology, Mining and Environmental Science, University of Bamenda, P.O. Box 39, Bamenda, North‐West Region, Cameroon

4Economic Geology Unit, Department of Geology, University of Buea, P.O. Box 63 Buea, South-West Region, Cameroon

Pub. Date: November 05, 2018

Cite this paper:
R.B. Ngatcha, O.A. Okunlola, C.E. Suh, E.R. Eben Mboe and C. Fuanya. A Review of Granitoid-Related Gold Mineralization Styles and Characteristics of the Neoproterozoic Eastern Gold Districts, Cameroon and the Role of Fluid Inclusion Studies in Elucidating the Genesis. Journal of Geosciences and Geomatics. 2018; 6(3):138-146. doi: 10.12691/jgg-6-3-4

Abstract

Geophysical, structural and geochemical data have been used to study the relationships between magmatism, tectonics, fluid circulation and gold mineralization in eastern Cameroon, and to provide pressure-temperature-composition-time paths constrained by the available dating. Primary gold mineralization displays spatial and temporal relationship with felsic to intermediate I-type granitoids emplaced in the 620-635 Ma period, in a volcanic arc setting at 625°C to 775°C. These granitoids were probably generated by partial melting of hydrated lower mafic crustal rocks, under oxidizing to moderately reduced conditions, where global permeability and tectonic regime allowed vertical fluid exchanges to be established. Mantle-derived, gold-enriched alkalic magmas are postulated as the ultimate source of gold enrichment in the crust. The Pan-African orogeny, and associated regional metamorphism and magmatism, generated large-scale movements of gold- and base metal-bearing fluids in the crust, channelized along complex fractures into regional NE-trending shear zones in Cameroon (e.g. Central Cameroon Shear Zone). However, these gold-rich alkalic magmas are so modified by crustal processes that evidence of their genetic relationship with gold become obscured. The primary ore mineral assemblage of quartz veins and veinlets within these shear zones consists of pyrite, galena, chalcopyrite, specular haematite, and gold. Preliminary fluid inclusion data from these auriferous quartz vein indicate that gold was probably transported predominantly as a bisulfide (HS¯) complex and deposited from low salinity (<1 to 8 wt% eq. NaCl) H2O–CO2 (±CH4±N2) fluids that have total homogenization temperatures of 245-355°C. Desulfidation of hydrothermal fluids by Fe-bearing minerals in the wall-rock triggered the main gold precipitation phase. The major and trace element composition of ore-forming fluids from the mineralized vein, barren and granitic intrusion is still largely unknown, yet could provide important and more direct evidence for the fluid source(s). This is vital in establishing a direct genetic link between granitoids and gold mineralization.

Keywords:
neoproterozoic granitoids gold mineralization hydrothermal alteration fluid inclusion Cameroon

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Hart, C.J.R., Goldfarb, R.J., Lewis, L.L., and Mair, J.L. (2004). The Northern Cordillera Mid-Cretaceous Plutonic Province: Ilmenite/magnetite-series granitoids and intrusion-related mineralisation: Resource Geology, 54 (3), 253-280.
 
[2]  Goldfarb, R.J., Baker, T., Dubé, B., Groves, D.I., Hart, C.J.R., and Gosselin, P. (2005). Distribution, character, and genesis of gold deposits in metamorphic terranes, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., eds., Economic Geology: One Hundreth Anniversary Volume: Littleton, Colorado, Society of Economic Geologists, Inc., p. 407-450.
 
[3]  Suh, C.E. Lehmann, B. and Mafany, G.T. (2006). Geology and geochemical aspects of lode gold mineralization at Dimako-Mboscorro, SE Cameroon. Geochemistry: Exploration, Environment, Analysis, 6, 295-309.
 
[4]  Asaah, A.V., Zoheir, B., Lehmann, B., Frei, D., Burgess, R., Suh, C.E. (2014). Geochemistry and geochronology of the ~620 Ma gold-associated Batouri granitoids, Cameroon. International Geology.
 
[5]  African Aura Mining, 2009. Batouri Gold Project, Cameroon, Volume 2009: London, African Aura Resources (UK) Ltd.
 
[6]  Fuanya C., Yongue F.R., Kankeu B. (2014). Geological study of gold indices at Ako’ozam, Akom II region (South Cameroon). Sciences, Technologies et Développement, 15, 98-106.
 
[7]  Soh, T.L., Ganno, S., Kouankap Nono, G.D., Ngnotue, T., Kankeu, B., Nzenti, J.P. (2014). Stream Sediment Geochemical Survey of Gouap-Nkollo Prospect, Southern Cameroon: Implications for Gold and LREE Exploration. American Journal of Mining and Metallurgy, 2, (1) 8-16.
 
[8]  Omang, B.O., Suh, C.E., Lehmann, B., Vishiti, A., Chombong, N.N., Fon, A.N., Egbe, J.A., Shemang, E.M. (2015). Microchemical signature of alluvial gold from two contrasting terrains in Cameroon. Journal of African Earth Sciences, 112, 1-14.
 
[9]  Gazel J. and Gérard G. (1954). Carte géologique de reconnaissance du Cameroun au 1/500 000, feuille Batouri-Est avec notice explicative., pp. Memoir. Direction Mines Géologie, Yaoundé, Cameroon.
 
[10]  La Plaine P (1967). Indices minéreax et resources minérales du Cameroon. In bulletin de la direction des mines et de la géologie No. 5, République fédérale du Cameroon.
 
[11]  Milési, J.P., Toteu, S.F., Deschamps, Y., Feybesse, J.L., Lerouge, C., Cocherie, A., Penaye, J., Tchameni, R., MolotoA-Kenguemba, G., Kampunzu, H.A.B., Nicol, N., Duguey, E., Leistel, J.M., Saint-Martin, M., Ralay, F., Heinry, C., Bouchot, V., Doumnang Mbaigane, J.C., Kanda Kula, V., Chene, F., Monthel, J., Boutin, P., and Cailteux, J. (2006). An overview of the geology and major ore deposits of Central Africa: Explanatory note for the 1:4,000,000 map ‘Geology and major ore deposits of Central Africa’: Journal of African Earth Sciences, v. 44, p. 571-595.
 
[12]  George M. W. (2009). USGS Minerals yearbook 2007: Gold, pp. 31.1-31.14. U.S. Department of the Interior, US Geological Survey, Washington D.C.
 
[13]  Fon, A.N., Che, V.B. and Suh, C.E. (2012): Application of electrical resistivity and chargeability data on a GIS platform in delineating auriferous structures in a deeply weathered lateritic terrain, eastern Cameroon. International Journal of Geosciences, 3, 960-971.
 
[14]  Tchameni, R., Claude-Jean, D., Deudibaye, M., & Branquet, Y. (2013). On the occurrence of gold mineralization in the Pala Neoproterozoic formations, South-Western Chad. Journal of African Earth Science, 84, 36-46.
 
[15]  Soba, D., Michard, A., Toteu, S.F., Norman, D.I., Penaye, J., Ngako, V., Nzenti, J.P., Dautel, D. (1991). Donnees g eochronologiques nouvelles (Rb-Sr, U-Pb et Sm-Nd) sur la zone mobile panafricaine de l'Est Cameroun: age Proterozoïque superieur de la serie de Lom, vol. 312. Comptes Rendus de l'Acad emie des Sciences, Paris, 1453-1458.
 
[16]  Ngako, V., Affaton, P., Nnange, J.M. & Njanko, J.T. (2003). Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. – Journal of African Earth Sciences 36: 207-214.
 
[17]  Toteu, S.F., Penaye, J., Deloule, E., Van Schmus, W.R., and Tchameni, R., 2006, Diachronous evolution of volcanosedimentary basins north of the Congo craton: Insights from U–Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon): Journal of African Earth Sciences, v. 44, p. 428-442.
 
[18]  Kankeu, B., Greiling, R.O., Nzenti, J.P., Bassahak, J., Hell, J.V., 2012. Strain partitioning along the Neoproterozoic Central Africa shear zone system: structures and magnetic fabrics (AMS) from the Meiganga area, Cameroon. Neues Jahrb. Geol. Palaontologie Abh. 265, 27-47.
 
[19]  Vishiti, A., Suh, C.E., Lehmann, B., Egbe, J.A., Shemang, E.M. (2015): Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon. Journal of African Earth Sciences 111, 1-13.
 
[20]  Vishiti, A., Suh, C.E., Lehmann, B., Shemang, E.M., Ngome, N.L.J., Nshanji, N.J., Chinjo, F.E., Mongwe, O.Y., Egbe, A.J., Petersen, S. (2017). Mineral chemistry, bulk rock geochemistry, and S‐isotope signature of lode-gold mineralization in the Bétaré Oya gold district, south-east Cameroon. Geological Journal, 1-18.
 
[21]  Ateh, K.I., Suh1, C.E., Shemang, E.M., Vishiti, A., Tata, E., Chombong, N.N. (2017). New LA-ICP-MS U-Pb Ages, Lu-Hf Systematics and REE Characterization of Zircons from a Granitic Pluton in the Betare Oya Gold District, SE Cameroon Journal of Geosciences and Geomatics, 5, (6), 267-283.
 
[22]  Trompette, r. (1994). Geology of western Gondwana (2000-500Ma). Pan-African-Brasiliano aggregation of South America and Africa. – 350 pp.; Rotterdam (Balkema).
 
[23]  de Wit, M.J., de Brito Neves, B.B., Trouw, R., Allard, J. & Pankhurst, R.J. (2008a). Pre- Cenozoic correlations across the South Atlantic region; “the ties that bind”. Geological Society, London, Special Publications, 294, 1-8.
 
[24]  de Wit, M.J., Stankiewicz, J. & Reeves, C. (2008b). Restoring Pan-African/Brasiliano connections; more Gondwana control, less trans-Atlantic corruption. – Geological Society, London, Special Publications, 294, 399-412.
 
[25]  Castaing, C., FeyBesse, J.L., Thieblemont, D., Triboulet, C. & Chevremont, P. (1994). Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks. – Precambrian Research, 69, 327-344.
 
[26]  Neves, S.P., Silva, J.M.R. & Mariano, G. (2005). Oblique lineations in orthogneisses and supracrustal rocks: vertical partitioning of strain in a hot crust (eastern Borborema Province, NE Brazil). – Journal of Structural Geology, 27, 1507-1521.
 
[27]  Njome, M.S. & Suh, C.E. 2005. Tectonic evolution of the Tombel graben basement, southwestern Cameroon. Episodes, 28, 37-41.
 
[28]  Kankeu, B. & Greiling, R.O. (2006). Magnetic fabrics (AMS) and transpression in the Neoproterozoic basement of Eastern Cameroon (Garga-Sarali area). – Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 239, 263-287.
 
[29]  Kankeu, B. (2008). Anisotropie de la susceptibilité magnétique (ASM) et fabriques des roches Néoprotérozoiques des régions de Garga-Sarali et Bétaré-Oya à l’Est Cameroon: implications géodynamiques pour l’évolution de la chaîne panafricaine d’Afrique Centrale. Ph.D. thesis, Université de Yaoundé I, Faculté des Sciences, Yaoundé, 232 pp.
 
[30]  Kankeu, B., Greiling, R.O., Nzenti, J.P. (2009). Pan-African strike-slip tectonics in eastern Cameroon Magnetic fabrics (AMS) and structures in the Lom basin and its gneissic basement. Precambrian Res. 174, 258-272.
 
[31]  Toteu, S.F., Penaye, J., and Djomani, Y.P. (2004). Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon: Canadian Journal of Earth Sciences, v. 41, p. 73-85.
 
[32]  Van Schmus, W.R., Oliveira, E.P., Da Silva Filho, A.F., Toteu, S.F., Penaye, J., and Guimaraes, I.P. (2008). Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt: Geological Society, London, Special Publications, v. 294, no. 1, p. 69-99.
 
[33]  Tanko-Njiosseu, E.L., Nzenti, J.P., Njanko, T., Kapajika, B., and Nédélec, A. (2005). New U–Pb zircon ages from Tonga (Cameroon): Coexisting Eburnean-Transamazonian (2.1 Ga) and Pan-African (0.6 Ga) imprints: Comptes Rendus Geosciences, v. 337, p. 551-562.
 
[34]  Tagne-Kamga, G. (2003). Petrogenesis of the Neoproterozoic Ngondo plutonic complex (Cameroon, west central Africa); a case of late-collisional ferro-potassic magmatism. – Journal of African Earth Sciences, 36, 149-171.
 
[35]  Penaye, J., Kröner, A., Toteu, S.F., Van Schmus, W.R., and Doumnang, J.C. (2006). Evolution of the Mayo Kebbi region as revealed by zircon dating: An early (ca. 740 Ma) PanAfrican magmatic arc in southwestern Chad: Journal of African Earth Sciences, v. 44, p. 530-542.
 
[36]  Tchameni, R., Pouclet, A., Penaye, J., Ganwa, A.A., and Toteu, S.F. (2006). Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting: Journal of African Earth Sciences, v. 44, p. 511-529.
 
[37]  Kwekam, M., Liégeois, J.P., Njonfang, E., Affaton, P., Hartmann, G., Tchoua, F. (2010). Nature, origin and significance of the Pan-African high-K calc-alkaline Fomopea plutonic complex in the Central African fold belt (Cameroon). Journal of African Earth Science 57, 79-95.
 
[38]  Ngnotue, T., Ganno, S., Nzenti, J.P., Schulz, B., Tchaptchet, T.D., Suh, C.E. (2012). Geochemistry and Geochronology of Peraluminous High-K Granitic Leucosomes of Yaoundé Series (Cameroon): Evidence for a unique Pan-African Magmatism and Melting Event in North Equatorial Fold Belt. International Journal of Geosciences, 3, 525-548.
 
[39]  Mosoh Bambi, C.K., Frimmel, H.E., Zeh, A., and Suh, C.E. (2013). Age and origin of Pan-African granites and associated U–Mo mineralization at Ekomédion, southwestern Cameroon: Journal of African Earth Sciences, v. 88, p. 15-37.
 
[40]  Houketchang Bouyo, M., Penaye, J., Njel, U. O., Moussango, A. P. I., Sep, J. P. N., Nyama, B. A., Wu, F. (2016). Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of northern Cameroon: Implications for tectonomagmatic evolution. Journal of African Earth Sciences, 116(January), 9-41.
 
[41]  Toteu, S.F., Michard, A., Bertrand, J.M., Rocci, G. (1987). U:Pb dating of Precambrian rocks from northern Cameroon, orogenic evolution and chronology of the Pan-African belt of central Africa. Precamb. Res. 37, 71-87.
 
[42]  Toteu, S.F., Van Schmus, R.W., Penaye, J., Michard, A. (2001). New U-Pb and Sm-Nd data from north central Cameroon and its bearing on the Pre-Pan-African history of Central Africa. Precambrian Res. 108, 45-73.
 
[43]  Soba, D. (1989). La se´rie du Lom: etude ge´ologique et ge´ochronologique d’un bassin volcanose´dimentaire de la chaı ˆne panafricaine a` l’Est Cameroun. The`se de Doctorat d’Etat, Universite´ De Paris VI, 181p.
 
[44]  Takodjou Wambo, J.D., Ganno, S., Djonthu Lahe, Y.S., Kouankap Nono, G.D., Fossi, D.H., Tchouatcha, M.S., Nzenti, J.P. (2018). Geostatistical and GIS analysis of the spatial variability of alluvial gold content in Ngoura-Colomines area, Eastern Cameroon: Implications for the exploration of primary gold deposit. Journal of African Earth Sciences 142, 138-157.
 
[45]  Vishiti, A. (2009). Primary and Eluvial Gold in the Batouri North Gold District, Southeastern Cameroon (Unpublished M.Sc. thesis). University of Buea, p. 75.
 
[46]  Fuh, C.G. (1990). The geochemical and structural controls on gold mineralization in the Colomines area: Pan-African belt of eastern Cameroon. Ph.D. thesis, University of London, UK, pp. 268.
 
[47]  Soba, D. (1975). Le granite de Nyibi et son aure´ole de contact. Comptes Rendus de l’Acade´mie des Sciences, Paris 280, 1935-1938.
 
[48]  Lassere, M., Soba, D. (1976). Age cambrian des granites de Nybi et de Kongolo (centre-east Cameroun). Comptes Rendus de l’Acade´mie des Sciences, Paris 283, 1695-1698.
 
[49]  Chappell, B.W., and White, A.J.R. (1974). Two contrasting granite types Pacific Geology 8, 173-174.
 
[50]  Blevin, P.L. (2015). Intrusion Related Gold Deposits. PetroChem Consultants Pty Ltd, p15.
 
[51]  Jensen, E.P., and Barton, M.D. (2000). Gold deposits related to alkaline magmatism, in Hagemann, S.G., and Brown, P.E., eds., Gold in 2000: Littleton, Society of Economic Geologists, Inc., p. 279-314.
 
[52]  Sillitoe, R. H. (2000). Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. Reviews in Economic Geology, 13, 315-345.
 
[53]  Cooke D. R. and Simmons S. F. (2000). Characteristics and genesis of epithermal gold deposits. In Gold in 2000 (eds. S. G. Hagemann and P.E. Brown), pp. 221-244. Society of Economic Geologists Inc., Littleton.
 
[54]  Thompson J. F. H. and Newberry R. J. (2000). Gold deposits related to reduced granitic intrusions. In Gold in 2000 (eds. S. G. Hagemann and P. E. Brown), pp. 377-400. Society of Economic Geologists Inc., Littleton.
 
[55]  Meinert L. D. (2000). Gold in skarns related to epizonal intrusions. In Gold in 2000 (eds. S. G. Hagemann and P. E. Brown), pp. 347-375. Society of Economic Geologists Inc., Littleton.
 
[56]  Hronsky J. M. A. and Groves D. I. (2009). Towards a unified model for magmatic-hydrothermal gold metallogeny with implications for orogenic gold. In smart science for exploration and mining (ed. P. J. Williams), pp. 102-104. Economic Geology Research Unit, James Cook University, Townsville, Australia.
 
[57]  Pirajno F. and Jacob R. E. (1988). Gold mineralisation in the intracontinental branch of the Damara Orogen, Nambia. In Bicentennial Gold '88, pp. 168-171. Geological Society of Australia Abstract Series 23, Melbourne.
 
[58]  Goldfarb, R.J., Groves, D.I. and Gardoll, S. (2001). Orogenic gold and geologic time: A global synthesis: Ore Geology Reviews, 18: 1-75.
 
[59]  Bierlein, F.P., Groves, D.I., Goldfa rb, R.J. and Dube, B. (2006). Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Miner. Deposita, 40, 874-886.
 
[60]  Morrison, G. W., Rose, W. J., & Jaireth, S. (1991). Geological and geochemical controls on the silver content (fineness) of gold in gold–silver deposits. Ore Geology Reviews, 6, 333-364.
 
[61]  Neto, J. A. S., Legrand, J. M., Volfinger, M., Pascal, M.-L., & Sonnet, P. (2008). W–Au skarns in the Neo‐Proterozoic Seridó Mobile Belt, Borborema Province in northeastern Brazil: An overview with emphasis on the Bonfim deposit. Mineralium Deposita, 43, 185-205.
 
[62]  Asaah, A.V. (2010). Lode Gold Mineralisation in the Neoproterozoic Granitoids of Batouri, Southeastern Cameroon (Unpublished Ph.D. thesis). Clausthal University of Technology, p. 200.
 
[63]  An, F., Zhu, Y.F., 2010. Native antimony in the Baogutu gold deposit (west Junggar, NW China): its occurrence and origin. Ore Geology Reviews, 37, 214-223.
 
[64]  Hart, C.J.R., 2007. Reduced intrusion-related gold systems, in Goodfellow, W.D., ed., Mineral deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5, 95-112.
 
[65]  Van den Kerkhof A. and Thiéry R. (2001). Carbonic inclusions. Lithos 55 (1-4), 49-68.
 
[66]  Seward T. M. (1984). The transport and deposition of gold in hydrothermal systems. In Gold '82: The Geology, Geochemistry and Genesis of Gold Deposits (ed. R. P. Foster), pp. 165-181. A. A. Balkema, Rotterdam.
 
[67]  Romberger S. B. (1988). Geochemistry of gold in hydrothermal deposits. In US Geological Survey Bulletin 1857-A, pp. A9-A25. US Government Printing Office, Washington, DC.
 
[68]  Wood S. A. and Samson I. M. (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. In Techniques in hydrothermal ore deposits geology (eds. J. P. Richards and P. B. Larson), pp. 33-80. Society of Economic Geologists, Inc., Littleton.
 
[69]  Gammons, C.H., Williams-Jones, A.E., 1997. Chemical mobility of gold in the porphyry-epithermal environment. Economic Geology 92, 45-59.
 
[70]  Zajacz, Z., Seo, J.H., Candela, P.A., Piccoli, P.M., Heinrich, C.A., Guillong, M. (2010). Alkali metals control the release of gold from volatile-rich magmas. Earth and Planetary Science Letters 297, 50-56.
 
[71]  Groves D. I., Goldfarb R. J., Gebre-Mariam M., Hagemann S. G., and Robert, F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews 13(1-5), 7-27.
 
[72]  Ridley, J.R. and Diamond, L. (2000). Fluid chemistry of orogenic lode gold deposits and implications for generic models. In: Hagemann, S.G., Brown, P.E. (eds): Gold in 2000. Reviews in Economic Geology, 13, 141-162.
 
[73]  Hayashi K.-i. and Ohmoto H. (1991). Solubility of gold in NaCl-and H2Sbearing aqueous solutions at 250-350°C. Geochimica et Cosmochimica Acta 55(8), 2111-2126.
 
[74]  Zhu, Y., An, F., Tan, J. (2011). Geochemistry of hydrothermal gold deposits: A review. Geoscience Frontiers, 2(3), 367e-374.
 
[75]  Robb, L. (2005). Introduction to Ore-forming Processes. Blackwell Publishing, Malden, 373 pp.
 
[76]  Allan, M.M., Yardley, B.W.D., Forbes, L.J., Shmulovich, K.I., Banks, D.A., Shepherd, T.J., (2005). Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. Am. Mineral. 90, 1767-1775.
 
[77]  Günther, D., Audétat, A., Frischknecht, R., Heinrich, C.A. (1998). Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation–inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 13, 263-270.
 
[78]  Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audétat, A., Günther, D., Hattendorf, B., Bleiner, D., Guillong, M., Horn, I. (2003). Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductievelycoupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 67, 3473-3497.
 
[79]  Zajacz, Z., Halter, W.E., Pettke, T., Guillong, M. (2008). Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochimica et Cosmochimica Acta, 72, 2169-2197.
 
[80]  Seo, J.H., Guillong, M., Aerts, M., Zajacz, Z., Heinrich, C.A. (2011). Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chem. Geol. 284, 35-44.
 
[81]  Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T., Kunze, K. (2005): Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: the Bingham porphyry. Earth Planet. Sci. Lett. 235, 229-243.
 
[82]  Heijlen, W., Banks, D.A., Muchez, P., Stensgard, B.M., Yardley, B.W.D. (2008). The nature of mineralizing fluids of the Kipushi Zn-Cu deposit, Katanga, Democratic Republic of Congo: quantitative fluid inclusion analysis using laser ablation ICP-MS and bulk crush-leach methods. Econ. Geol. 103, 1459-1482.
 
[83]  Marsala, A., Wagner, T., Wälle, M. (2013). Late-metamorphic veins record deep ingression of meteoric water: a LA-ICPMS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany. Chem. Geol. 351, 134-153.
 
[84]  Rauchenstein-Martinek, K., Wagner, T., Wälle, M., Heinrich, C.A. (2014). Gold concentrations in metamorphic fluids: a LA-ICPMS study of fluid inclusions from the Alpine orogenic belt. Chem. Geol. 385, 70-83.
 
[85]  Rauchenstein-Martinek, K., Wagner, T., Wälle, M., Heinrich, C.A., Arlt, T. (2016): Chemical evolution of metamorphic fluids in the Central Alps, Switzerland: insight from LAICPMS analysis of fluid inclusions.
 
[86]  Wagner, T., Fusswinkel, T., Wälle, M., Heinrich, C.A. (2016). Microanalysis of fluid inclusions in crustal hydrothermal systems using laser ablation methods. Elements 12, 323-328.
 
[87]  Wilkinson, J.J. (2001). Fluid inclusions in hydrothermal ore deposits. Lithos 55, 229-272.
 
[88]  Kontak, D.J. and Kyser, K. (2011). A fluid inclusion and isotopic study of an intrusion-related gold deposit (IRGD) setting in the 380 Ma South Mountain Batholith, Nova Scotia, Canada: evidence for multiple fluid reservoirs. Miner Deposita, 46, 337-363.
 
[89]  Fusswinkel, T., Wagner, T., Sakellaris, G., 2017. Fluid evolution of the Neoarchean Pampalo orogenic gold deposit (E Finland): Constraints from LAICPMS fluid inclusion microanalys. Chem. Geol.
 
[90]  Takodjou Wambo, J.D., Ganno, S., Ngambu, A.A., Negue, E.N., Ondoa, J.M., Nzenti, J.P. (2016). Use of Landsat 7 ETM+ Data for the Geological Structure Interpretation: Case Study of the Ngoura-Colomines Area, Eastern Cameroon. Journal of Geosciences and Geomatics, 4(3), 61-72.
 
[91]  UNDP (United Nations Development Programme) 1987. Recherches minières dans le sud-est du Cameroun (Project No.: DP/UN/CMR-81-005/2): Final Technical Report, p89.