Journal of Geosciences and Geomatics
ISSN (Print): 2373-6690 ISSN (Online): 2373-6704 Website: Editor-in-chief: Maria TSAKIRI
Open Access
Journal Browser
Journal of Geosciences and Geomatics. 2020, 8(2), 58-75
DOI: 10.12691/jgg-8-2-2
Open AccessArticle

Mineral Chemistry and Descriptive Petrology of the Pan-African High-K Granitoids and Associated Mafic Rocks from Mbengwi, NW Cameroon: Petrogenetic Constraints and Geodynamic Setting

Benoît Joseph Mbassa1, , Emmanuel Njonfang2, Caroline Neh Ngwa1, Michel Grégoire3, Zénon Itiga4, Pierre Kamgang5, Mfomou Ntepe1, Jesús Solé Viñas6, Mathieu Benoit3, Jacques Dili-Rake1 and Ferdinand Mbossi Eddy1

1Institute for Geological and Mining Research, Branch for Geophysical and Volcanological Research, P.O. Box 4110, Yaoundé Cameroon

2Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon

3Géosciences-Environnement-Toulouse, UMR 5563, Université Paul-Sabatier, 14 avenue Édouard-Belin. 31400 Toulouse, France

4Department of Earth Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon

5Department of Earth Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon

6Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), Cd. Universitaria, Coyoacán, 04510 Cd. de México, MEXICO

Pub. Date: July 01, 2020

Cite this paper:
Benoît Joseph Mbassa, Emmanuel Njonfang, Caroline Neh Ngwa, Michel Grégoire, Zénon Itiga, Pierre Kamgang, Mfomou Ntepe, Jesús Solé Viñas, Mathieu Benoit, Jacques Dili-Rake and Ferdinand Mbossi Eddy. Mineral Chemistry and Descriptive Petrology of the Pan-African High-K Granitoids and Associated Mafic Rocks from Mbengwi, NW Cameroon: Petrogenetic Constraints and Geodynamic Setting. Journal of Geosciences and Geomatics. 2020; 8(2):58-75. doi: 10.12691/jgg-8-2-2


The Mbengwi Pan-African high-K calk-alkaline I-type plutonic rocks consist of granitoids and monzodiorites. These granitoids have a rather homogeneous mineralogical composition made up of calcic amphiboles, ferromagnesian and lithio-aluminous micas, quartz, feldspars, oxides, titanite and incidentally of sulphides, magmatic epidote, apatite, zircon, chlorites and carbonates. Plagioclase compositions range from Na-albite to andesine. Micas are Mg-biotite in monzodiorites and Mg-biotite, Fe-biotite, siderophyllite, lepidomelane, muscovite and phengite in granitoids. Magmatic amphiboles are made up of Fe-hornblende, Mg-hornblende, Fe-edenite, Mg-hastingsite or edenite whereas post-magmatic amphiboles are actinolite. Trace elements analyses reveal: i) low rare earth elements content in monzodiorites (average = 199.9 ppm) compared to granitoids (average = 404.65 ppm); ii) a weak to strong fractionation ((La/Lu)N = 4.5 - 102.96), iii) an enrichment in LILE and LREE relative to HFSE and HREE, and iv) negative anomalies in Rb, K, Sr, Ti, Eu and positive ones in Th and La. Mineralogical and whole rock geochemical results reveal that magmas were produced by vapor-present partial melting of one or several heterogeneous igneous protoliths relatively rich in potassium. The investigated rocks were emplaced between 4 and 34 km deep, at pressure ranging from 1.2 to 9.4 Kbars and were not subjected to post-magmatic alterations according to their Zr/Hf values (> 20). Their differentiation process is the combined result of fractional crystallization and multiple mixing and mingling.

Mbengwi Northwest Cameroon Pan-African minerals chemistry geochemistry

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 12


[1]  Chappell, B.W., White, A.J.R., “Two contrasting granite types: 25 years later”, Australian J Earth Sci, 48, 489-499, 2001.
[2]  King, P.L., Chappell, B.W., Allen, C.M., White, A.J.R., “Are A-type granites the high temperature felsic granites? Evidence from fractionated granites of the Wangrah suite”, Australian J Earth Sci, 48, 501-514, 2001.
[3]  Tarney, J., Jones, C.E., “Trace element geochemistry of orogenic igneous rocks and crustal growth models”, J Geol Soc, 151 (5), 855-868, 1994.
[4]  Frost, C.D., Frost, B.R., “High-K, iron-enriched rapakivi-type granites: the tholéiites connection”, Geol, 25, 647-650, 1997.
[5]  Loiselle, M.C., Wones, D.R., “Characteristics and origin of anorogenic granites”, Geol Soc Am Abstr with Programs 11, 468, 1979.
[6]  Conte, A.M., Cuccuru, S., D'Antonio, M., Naitza, S., Oggiano, G., Secchi, F., Casini, L., Cifelli, F., “The post-collisional late Variscan ferroan granites of southern Sardinia (Italy): Inferences for inhomogeneity of lower crust”, Lithos, 294-295, 263-282, 2017.
[7]  Dumort, J.C., Notice explicative de la carte géologique de reconnaissance du Cameroun au 1/500 000. In: Feuille Douala Ouest - direction des mines et géologie du Cameroun, 1968.
[8]  Peronne, Y., Notice explicative sur la feuille Wum-Banyo avec carte géologique de reconnaissance au 1/500.000, Dir Mines Géol Yaoundé, Cameroun, 1969.
[9]  Mbassa, B.J., Kamgang, P., Grégoire, M., Njonfang, E., Benoit, M., Itiga, Z., Duchene, S., Bessong, M., Wonkwenmendam, N.P., Ntepe, N., “Evidence of heterogeneous crustal origin for the Pan-African Mbengwi granitoids and the associated mafic intrusions (NW-Cameroon, central Africa)”, CR Geosci, 348, 116-126, 2016.
[10]  Mbassa, B.J., Njonfang, E., Grégoire, M., Itiga, Z., Kamgang, P., Benoit, M., Ndjigui, P.D., Ngwa, N.C., Nolla, J.D., “Evaluation of the mineralizing potential of the Mbengwi plutonics, Northwestern Cameroon, Central Africa”, Arab J Geosci, 11, 657, 2018
[11]  Toteu, S.F., Penaye, J., Poudjom Djomani, Y., “Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon”, Can J Earth Sci, 41, 73-85, 2004.
[12]  Nzenti, J.P., Barbey, P., Macaudière, J., Soba, D., “Origin and evolution of late Precambrian high-grade Yaounde gneisses”, Precamb Res, 38, 91-109, 1988.
[13]  Nédélec, A., Macaudière, J., Nzenti, J.P., Barbey, P., « Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun). Implications sur la structure de la zone mobile panafricaine d’Afrique Centrale au contact du craton du Congo », C R Acad Sci, (Paris), 75-80, 1986.
[14]  Toteu, S.F., Van Schmus, R.W., Penaye, J., Michard, A., New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre- Pan-African history of central Africa, Precamb Res, 108, 45-73, 2001
[15]  Abdelsalam, M.G., Liégeois, J.P., Stern, R.J., “The saharan metacraton”, J Afr Earth Sci, 34, 119-136, 2002.
[16]  Ngako, V., Njonfang, E., Plates amalgamation and plate destruction, the western Gondwana history. In: Closson D (ed) Tectonics, Belgium, 2011, 978-953.
[17]  Bouyo Houketchang, M., Penaye, J., Barbey, P., Toteu, S.F., Wandji, P., “Petrology of high pressure granulite facies metapelites and metabasites from Tcholliré and Banyo regions: Geodynamic implication for the Central African fold belt (CAFB) of North-central Cameroon”, Precamb Res 224, 412-413, 2013.
[18]  Njanko, T., Nédélec, A., Affaton, P., “Syn-kinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): Petrology and geodynamic significance”, J Afr Earth Sci, 44, 494-510, 2006.
[19]  Ngako, V., Affaton, P., Njonfang, E., “Pan-African tectonics in northwestern Cameroon: implication for the history of western Gondwana”, Gond Res, 14, 509-522, 2008.
[20]  Toteu, S.F., Michard, A., Bertrand, J.M., Rocci, G., “U-Pb dating of Precambrian rocks from northern Cameroon, orogenic evolution and chronology of the Pan-African belt of central Africa”, Precamb Res, 37, 71-8, 1987.
[21]  Mbassa, B.J., Njonfang, E., Benoit, M., Kamgang, P., Grégoire, M., Duchene, S., Brunet, P., Ateba, B., Tchoua, F.M., “Mineralogy, geochemistry and petrogenesis of the recent magmatic formations from Mbengwi, a continental sector of the Cameroon Volcanic Line (CVL), Central Africa”, Miner Petro, 106, 217-242, 2012.
[22]  Pouchou, J.L., Pichoir, F., Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, 1991, 31-75.
[23]  Jochum, K.P., Weis, U., Schwager, B., Stoll, B., Wilson, S.A., Haug, G.H., Andreae, M.O., Enzweiler, J., “Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials”, Geostand Geoanal Res, 40(3), 333-350, 2015.
[24]  Xie, ., Yan, ., Li, ., Shen, ., “Geochemical Reference Samples, Drainage Sediment GSD 1-8 from China”, Geostandards Newsletter, 1985.
[25]  Tischendorf, G., Gottesmann, B., Förster, H.-J., Trumbull, R.B., “On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation”, Mineral Mag, 61, 809-834, 1997.
[26]  Tröger, W.E., Optische Bestimmung der gesteinsbildenden Minerale. Teil 2. Scheweizerbartsche Verlagsbuchhandlung, Stuttgart, 1982
[27]  Deer, W.A., Howie, R.A., Zussman, J., An introduction to the rock forming minerals, 2nd ed. Springer, London, 1992.
[28]  Nachit, H., Ibhi, A., Abia E.H., Ben Ohoudet, M., “Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites”, C R Geosci, 337, 1415-1420, 2005.
[29]  Keeditse, M., Rajesh, H.M., Belyanin, G.A., Fukuyama M., Tsunogae, “Primary magmatic amphibole in Archaean meta-pyroxenite from the central zone of the Limpopo Complex, South Africa”, S Afr J Geol, 119 (4), 607-622, 2016.
[30]  Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M., “IMA Report - Nomenclature of the amphibole supergroup”, Am Mineral (97/11-12), 2031-2048, 2012.
[31]  Smith, D.C., “Highly aluminous sphene (titanite) in natural high-pressure hydrous eclogite facies rocks from Norway and Italy, and experimental runs at high pressure”, Abst, 26th Intern Geol Conf, Paris, 1980.
[32]  Hey, M.H., “A new review of the chlorites”, Mineral Mag, 30, 277-292, 1954.
[33]  Middlemost, E.A.K., “Naming material in the magma/igneous rock system”, Earth Sci Rev, 37, 215-224, 1994.
[34]  Le Bas, M., LeMaitre, R., Streckeisen, A., Zanettin B., “A chemical classification of volcanic rocks based on the total alkali-silica diagram”, J. Petrol, 27 (3), 745-750, 1986.
[35]  Le Maître, R.W., Bateman, P., Dubek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., Zanettin, B., A classification of igneous rocks and glossary of terms. Recommendations Int Union Geol Sci Sub commission on the Systematic of Igneous rocks, Oxford, Blackwell, 1989.
[36]  Maniar, P.D., Piccoli, P.M., “Tectonic discrimination of granitoids”, Geol Soc Am Bull, 101, 635-643, 1989.
[37]  Chappell, B.W., White, A.J.R., “I- and S-type granites in the Lachlan fold belt”, Trans R Soc Edinb Earth Sci, 83, 1-26, 1992.
[38]  Frost, B.R., Arculus, R.J., Barnes, C.G., Collins, W.J., Ellis, D.J., Frost, C.D., “A geochemical classification of granitic rocks”, J Petrol, 42, 2033-2048, 2001.
[39]  Taylor, S.R., McLennan, S.M., The Continental Crust: Its composition and evolution, Blackwell, Oxford, 1985
[40]  Anders, E., ., “Abundances of the elements: Meteoritic and solar”, Geochim Cosmochim Acta, 53, 197-214, 1989.
[41]  De Paolo, D.J., “Trace elements and isotopic effects of combined wallrock assimilation and fractional crystallization”, Earth Planet Sci Lett, 53, 189-202, 1981.
[42]  Roberts, M.P., Clemens, J.D., “Origin of high-potassium, calcalkaline, I-type granitoids”, Geol, 21, 825-828, 1993.
[43]  Liégeois, J.P., Black, R., Navez, J., Latouche, L., “Early and late Pan-African orogenies in the Aïr assembly of terrane (Tuareg shield, Niger)”, Precamb Res, 67, 59-88, 1994.
[44]  Barbarin, B., “Genesis of the two main types of peraluminous granitoids”, Geol, 24, 295-298, 1996.
[45]  Wones, D.R., “Significance of the assemblage titanite + magnetite + quartz in granitic rocks”, Am Miner, 74, 744-749, 1989.
[46]  Chappell, B.W., White ,A.J.R., “Two contrasting granite types”, Pacific Geol, 8, 173-174, 1974.
[47]  Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., Champion, D., “An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution”, Lithos, 79 (1-2), 1-24, 2005.
[48]  Jiang, Y.H., Jiang, S.Y., Dai, B.Z., Liao, S.Y., Zhao, K.D., Ling, H.F., “Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: implications for a continental arc to rifting”, Lithos, 107, 185-204, 2009.
[49]  Li, Y.J., Zhao, R.F., Li, Z.C., Liu, Z.W., Li, Y., “Origin discrimination of granitoids formed by mingled magma: using a trace element diagram and exemplified by Wenquan granites, western Qinling”, J Changan Univ Earth Science Ed, 25 (3), 7-11, 2003 (in Chinese with English abstract).
[50]  Holland, T., Blundy, J., “Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry”, Contrib Mineral Petrol, 116, 433-447, 1994.
[51]  Blundy, J.D., Holland, T.J.B., “Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer”, Contrib Mineral Petrol 104, 208-224, 1990.
[52]  Schmidt, M.W., “Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer”, Contrib Miner Petrol, 110, 304-310, 1992.
[53]  Anderson, J.L., Smith, D.R., “The effect of temperature and oxygen fugacity on Al-in-hornblende barometry”, Am Mineral, 80, 549- 559, 1995.
[54]  Ushida, E., Endo, S., Makino, M., “Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits”, Resource Geology, 57 (1), 47-56, 2007.
[55]  Czamanske, G.K., Wones, D.R., “Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part 2, the mafic silicates”, J Petrol, 14, 349-380, 1973.
[56]  Bora, S., Kumar, S., “Geochemistry of biotites and host granitoids plutons from the Proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism”, Int Geol Rev, 57, (11-12), 1686-1706, 2015
[57]  Nédelec, A., Bouchez, J.L, Pétrologie des granites, structure, cadre géologique, Vuibert, Paris, 2011.
[58]  Blundy, J.D., Sparks, R.S.J., “Petrogenesis of Mafic Inclusions in Granitoids of the Adamello Massif, Italy”, J. Petrol., 33 (5), 1039-1104, 1992.
[59]  Bonin, B., “Do coeval mafic and felsic magmas in postcollisional to within-plate regimes necessarily imply two constrasting, mantle and crustal sources? A review”, Lithos, 78, 1-24, 2004.
[60]  D’Lemos, R.S., “Mixing between granitic and dioritic crystal mushes, Guernsey, Channel Island, UK”, Lithos, 38: 233-257, 1996.
[61]  Vernon, R.H., “Micro-granitoid enclaves: globules of hybrid magma quenched in a plutonic environment”, Nature, 304:438-439, 1984.
[62]  Kocak, K., Zedef, V., Kansun, G., “Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves”, Miner Petrol, 103, 149-167, 2011.
[63]  Yang, H., Ge, W.C., Zhao, G.C., Dong, Y., Xu, W.L., Wang, Z.H., Ji, Z., Yu, J.J., “Late Triassic intrusive complex in the Jidong region, Jiamusi-Khanka Block, NE China: geochemistry, zircon U-Pb ages, Lu-Hf isotopes, and implications for magma mingling and mixing”, Lithos, 224-225, 143-159, 2015.
[64]  Yu, J.J., Hou, X.G., Ge, W.C., Zhang, Y.L., Liu, J.C., “Magma mixing genesis of the Early Permian Liulian pluton at the northeastern margin of the Jiamusi massif in NE China: evidences from petrography, geochronology and geochemistry”, Acta Petrol Sin, 29 (9), 2971-2986, 2013 (in Chinese with English abstract)
[65]  Aydoğan, M.S., Coban, H., Bozcu, M., Akinci, Ö., “Geochemical and mantle-like isotopic (Nd, Sr) composition of the Baklan Granite from the Muratdağı Region (Banaz, Uşak), western Turkey: Implications for input of juvenile magmas in the source domains of western Anatolia Eocene-Miocene granites”, J Asian Earth Sci, 33, 155-176, 2008.
[66]  Bonin, B., Moyen, J.F., Magmatisme et roches magmatiques, 3e édition, Dunod, Paris, 2011.
[67]  Nash, B.P., Crecraft, H., “Partition coefficients for trace elements in silicic magmas”, Geochem Cosmochim Acta, 49 (11), 2309-2322, 1985.
[68]  Dostal, J., Chatterjee, A.K., “Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)” Chem Geol, 163, 207 - 218, 2000.
[69]  Tetsopgang, S., Suzuki, K., Njonfang, E., “Petrology and CHIME geochronology of Pan-African high K and Sr/Y granitoids in the Nkambe area, Cameroon” Gond Res, 14, 686-699, 2008.
[70]  Guimarães, I.P., Da Silva Filho, F.A., Almeida, C.N., Van Schmus, W.R., Araujo, M.M.J., Melo, S.C., Melo, E.B., “Brasiliano (Pan-African) granitic magmatism in the Pajeù-Paraıba belt, northeast Brazil: an isotopic and geochronological approach”, Precamb Res, 135, 23-53, 2004.
[71]  Kwékam, M., Genèse et évolution des granitoïdes calco-alcalins au cours de la tectonique panafricaine: le cas des massifs syn à tardi-tectoniques de l’Ouest-Cameroun (Régions de Dschang et de Kekem), Thèse Doct d’État, Univ Yaoundé I, 2005.
[72]  Njonfang, E., Ngako, V., Kwékam, M., Affaton, P., « Les orthogneiss calco-alcalins de Foumban-Bankim: témoins d’une zone de cisaillement de haute température », CR Géosci, 338, 606-616, 2006.
[73]  Smith, J.V., Brown, W.L., Feldspar Minerals, Vol. 1: Crystal structures, physical, chemical and microstructural properties, 2nd edn, Springer-Verlag, New York, 1988.
[74]  Abdel-Rahman, A.M., “Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas”, J Petrol 35, 525-541, 1994.
[75]  Whitney, D.L., Evans, B.W., “Abbreviations for names of rock-forming minerals”, American Miner, 95, 185-187, 2010.
[76]  Rickwood, P.C., “Boundary lines within petrologic diagrams which use oxides of major and minor elements”, Lithos, 22, 247-264, 1989.
[77]  McDonough, W.F., Sun, S.S., “The composition of the Earth”, Chem Geol, 120, 223-253, 1995.
[78]  Patino Douce A.E., Beard J.S., “Effects of P, f(O2) and Mg/Fe ratio on dehydratation melting of model métagreywackes”, J Petrol, 37, 999-1024, 1996.
[79]  Singh, J., Johanneses, W., “Dehydration melting of tonalites: Part II. Composition of melts and solids”, Contrib Miner Petrol, 125, 26-44, 1996.
[80]  Altherr, R., Holl, A., Hegne, E., Lange, C., Kreuze, H, “High potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany)”, Lithos, 50, 51-73, 2000.