Journal of Geosciences and Geomatics
ISSN (Print): 2373-6690 ISSN (Online): 2373-6704 Website: http://www.sciepub.com/journal/jgg Editor-in-chief: Maria TSAKIRI
Open Access
Journal Browser
Go
Journal of Geosciences and Geomatics. 2019, 7(3), 112-133
DOI: 10.12691/jgg-7-3-3
Open AccessArticle

Lithogenic Concentrations of Useful Elements and Residual Mineralization Indices in the Weathering Products Derived from Mineralized Rocks in Meїganga (Central Cameroon)

Tchaptchet. T.W.1, , Tematio. P.1, Njiki. C.C.1, Guimapi. T.N.1, Hapi. F.1, Tiomo. I.1, Tchuenkam. D.B.1 and Momo. N.N.M.2

1Department of Earth Science, University of Dschang, P.O. Box. 67, Dschang, Cameroon

2Institut de Recherche Géologique et Minière (IRGM), Yaoundé, Nkolbissong, Cameroon

Pub. Date: June 10, 2019

Cite this paper:
Tchaptchet. T.W., Tematio. P., Njiki. C.C., Guimapi. T.N., Hapi. F., Tiomo. I., Tchuenkam. D.B. and Momo. N.N.M.. Lithogenic Concentrations of Useful Elements and Residual Mineralization Indices in the Weathering Products Derived from Mineralized Rocks in Meїganga (Central Cameroon). Journal of Geosciences and Geomatics. 2019; 7(3):112-133. doi: 10.12691/jgg-7-3-3

Abstract

This paper focuses on the use of morphological, mineralogical and geochemical characterization of weathering profiles from mineralized rocks in Meїganga, a locality in the South-East of Cameroon. It is aimed at assessing weathering processes that induced the lithogenic concentrations of useful elements, and eventually residual mineralization indices in weathered products. Seven weathering profiles derived from four distinct mineralized rocks (micaschists, orthogneiss, granite, and quartzite veins) were studied. The profiles exhibit shallow weathered A/B/C or A/C soil profiles with a moderate thickness (less than 4m). Minerals identified in the weathered products in decreasing contents (%) were: quartz (60.3-93.9), kaolinite (0.8-22.3), phlogopite (0.2-15.3), goethite (1.9-13.0), hematite (0.5-8.5), halloysite (0.2-4.6) and smectite (0.5-4.3). The SiO2 contents generally decrease upward in these weathering profiles, except for those from granitic parent rock. Inversely, Al2O3, Fe2O3 and TiO2 contents increase upward, except for the weathering profiles from granite and orthogneiss. Alkaline and alkaline earths are more or less completely exported during weathering. Chemical weathering parameters have revealed intense rocks weathering in Meїganga, resulting to the important accumulation of quartz in association with 1:1 clay minerals. Trace elements that prevail in these weathered products arranged in decreasing order of abundance include: S, Ba, Sr, Zr, Cr, V, Zn, Rb, Ni, Y, Sb, Cu, Pb, Li, Co, Ga, Nb, Th, Sc, Cs, Hf, Sn, U, Mo, and W. The most significant useful elements identified in these weathered products are arranged in decreasing order of abundance include: Zr, Cr, V, Sb, U, Cu, Nb, Hf, Mo, and W. The weathered products present a CI-chondrite normalized pattern of REEs characterized by the fractionation of HREEs relative to LREEs. The accumulation of trace elements (Ga, W, Y, Sn, Hf, Nb, Cu, Sc, V, Zn, Cr, Sb, Pb, Ni, Co, Li, Mo, Th, Rb, Cs, U, Zr and Ba) and REEs in the weathered products of Meїganga has been attributed to the effects of weathering. The main host minerals are the residual primary minerals (epidote, apatite, pyrite, titanite, zircon, or opaque minerals) and the newly formed secondary minerals (phlogopite, hematite, goethite, kaolinite and smectite). Correlation matrices between useful elements (Cr, Mo, U, V, Nb, Zr, Sb, Hf and W) and major oxides (Fe2O3, TiO2, P2O5 and Al2O3) indicates a strong affinity (>0.80), suggesting the trace elements are noble metals. Therefore, major oxides used as tracers for residual mineralization indices are: Al2O3 (Nb, Mo, U, W and Hf), Fe2O3 (Mo, Cr, V, Zr, Hf and Sb), P2O3 (U, Hf and Sb), and TiO2 (Nb, Zr, V and Cr). In the Meїganga soil profiles, mineralization indices could be assigned to W, V, Hf, Nb, Mo, Cr, Sb and U.

Keywords:
weathering products useful elements residual mineralization indices; African shear zone Meїganga central Cameroon

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Momo, N., Yemefack, M., Tematio, P., Beauvais, A., Ambrosi, J-P., 2016. Distribution of duri crusted bauxites and laterites on the Bamiléké plateau (West Cameroon): Constraints from GIS mapping and geochemistry. Catena, 140, 15-23.
 
[2]  Tematio, P., Tchaptchet, T.W., Nguetnkam, J.P., Mbog, M.B., Yongue, F.R., 2017. Mineralogical and geochemical characterization of weathering profils developed on mylonites in the Fodjomekwet-Fotouni section of the Cameroon Shear Zone (CSZ), West Cameroon. Journal of African Earth Sciences. 131, 32-42.
 
[3]  Kankeu, B., Greiling, R.O., Nzenti, J.P., 2009. Pan-African strike-slip tectonics in eastern Cameroon-Magnetic fabrics (AMS) and structure in the Lom basin and its basement. Precambrian Research 174, 258-272.
 
[4]  Kankeu, B., Greiling, R.O., Nzenti, J.P., Basahak, J., Hell, J.V., 2012. Strain partitioning along the Neoproterozoic Central Africa Shear zone system: structures and magnetic fabrics (AMS) from Meїganga area, Cameroun. NeuesJahrbuch fur Geologie und Palaeontologie Abhandlungen, 265, 27-48.
 
[5]  Ngako, V., Affaton, P., Nnange, J.M., Njanko, T., 2003. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. Journal of African Earth Sciences 36, 207-214.
 
[6]  Ngako, V., Affaton, P., Njonfang, E., 2008. Pan-African tectonic in northwestern Cameroon: Implication for history of westen Gondwana. Gondwana Research 14, 509-522.
 
[7]  Nguetnkam, J.P., Kamga R., Villiéras, F., Ekodeck, G.E. Yvon, J., 2006. Altération du granite en zones tropicales Exemple de deux séquences étudiées au Cameroun (Afrique Centrale). Étude et Gestion des Sols, 14, (1), 31-41.
 
[8]  Soba, D., Michard, A., Toteu, S.F., Norman, D.I., Penaye, J., Ngako, V., Nzenti, J.P., Dautel, D., 1991. Données Géochronologiques nouvelles (Rb-Sr, U-Pb et Sm-Nd) sur la zone mobile panafricaine de l’Est-Cameroun : âge protérozoïque supérieur de la serie de Lom. Comptes Rendus Academie Sciences Paris 312, 1453-1458.
 
[9]  Toteu, S.F., Yongue Fouateu, R., Penaye, J., Tchakounté, J., Semo Mouangue, C.A., Van Schmus, R.W., Deloule, E., Stendal, H., 2006.U-Pb dating of plutonic rocks involved in the nappe tectonic in Southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. Journal of African Earth Sciences 44, 479-493.
 
[10]  Ebot, V., Neba, G., Suh, E., 2016. Environmental Geochemistry of Mine Tailings Soils in the Artisanal Gold Mining District of Bétaré -Oya, Cameroon. Geochemistry Exploration Environment Analysis, 6, 52-62.
 
[11]  Fon, A.N., Che, V.B. and Suh, C.E., 2012. Application of Electrical Resistivity and Chargeability Data on a GIS Plat- form in Delineating Auriferous Structures in a Deeply Weathered Lateritic Terrain, Eastern Cameroon. International Journal of Geosciences, 3, 960-971.
 
[12]  Freyssinet, P. H., Lecomte, P., &Edimo, A., 1989. Dispersion of gold and base metals in the Mborguene lateritic profile, East Cameroon. Journal of Geochemical Exploration, 32, 99-116.
 
[13]  NtepGzeth, P., 1993. Carte de l’Or et du diamant de la province de l’Est Cameroun. Artisanaux des substances précieuses, à l’échelle de 1/500000. DMG/MINMEE Yaoundé.
 
[14]  NtepGzeth P., 1994. Point sur l’exploitation artisanale des substances précieuses dans la province de l’Est-Cameroun.
 
[15]  NtepGzeth, P., Dupuy, J., Matip, O., Fogakoh, F.A., Kalngui., E., 2001. Notice explicative de la carte thématique des ressources minérales du Cameroun.
 
[16]  Omang, B., Bih, C., Fon, A., Embui, V., Suh, C,E., 2014. Regional Geochemical Stream Sediment Survey for Gold Exploration in the Upper Lom Basin, Eastern Cameroon. International Journal of Geosciences,5, 1012-1026.
 
[17]  Omang., C.E. Suh., B. Lehmann., A. Vishiti., N.N. Chombong., A.N. Fon., J.A. Egbe., E.M. Shemang., 2015. Microchemical signature of alluvial gold from two contrasting terrains in Cameroon. Journal of African Earth Sciences, 112, 1-14.
 
[18]  Suh, C.E., Lehmann B. and Mafany, G.T., 2006. Geology and Geochemical Aspects of Lode Gold Mineralization at Dimako-Mboscorro, SE Cameroon. Geochemistry: Exploration, Environment, Analysis, 6, 295-309.
 
[19]  Toteu, S.F., Van Schmus, R.W., Penaye, J., Micharde, A., 2001. New U-Pb and Sm-Nd data from North-Central Cameroon and its bearing on the Pre-Pan-African history of Central Africa. Precambrian Research, 108, 45-73.
 
[20]  Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., Kaufh old, S., 2008. Quantitative phase analysis of bentonites by the Rietveld method. Clays Minerals. 56, 272 p.
 
[21]  Vishiti. A., Suh. C.E., Lehmann. B., Egbe. J.A., Schemang. E.M., 2015. Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon. Journal of African Earth Sciences. 111, 1-13.
 
[22]  Vishiti, A., Suh, C.E., Lehmann, B., Shemang, E., Ngome, N., Nshanji, N., Chinjo, F., Mongwe, O.,Egbe, A., Petersen, S., 2017. Mineral chemistry, bulk rock geochemistry, and S-isotope signature of lode‐gold mineralization in the Bétaré-Oya gold district, south‐east Cameroon. Geological Journal. 2017; 1-18.
 
[23]  Herbillon, A.J., 1988. Chemical estimation of weatherable minerals presents in the diagnostic horizons of low activity clay soils. VIIIth Int. Soil Classif. Workshop, 1986, Brazil, 39-48.
 
[24]  Kaiser, H. F., 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141-151.
 
[25]  Chapman, R.J., Mortensen, J.K., 2006. Application of microchemical characterization of placer gold grains to exploration for epithermal gold mineralization in regions of poor exposure. Journal of Geochemical. Exploration, 91, 1-26.
 
[26]  Chapman, R.J., Leake, R.C., Bond, D.P.G., Stedra, V., Fair grieve, B., 2009. Chemical and mineralogical signatures of gold formed in oxidizing chloride hydrothermal systems and their significance within populations of placer gold grains collected during reconnaissance. Economic. Geology, 104, 563-585.
 
[27]  Njonfang, E., Ngako, V., Moreau, C., Affaton, P., Diot, H., 2008. Restraining bends in high temperature shear zones: The « Central Cameroon Shear Zone », Central Africa. Journal of African Earth Sciences 52, 9-20.
 
[28]  Ganwa, A., Frisch, W., Siebel, W., Shang K.C., Ondoa, M.J., Satir, M., Numbem, T.J., 2008. Zircon 207Pb/206Pb evaporation ages of Panafrican metasedimentary rocks in the Kombé-II area (Bafia Group, Cameroun): Constraints on protolith age and provenance. Journal of African Earth Sciences, 51, 77-88.
 
[29]  Ganwa, A.A, Siebel, W., Frisch, W., Shang, C.K., 2011. Geochemistry of magmatic rocks and time constraints on deformational phases and shear zone slip in the Meїganga area, central Cameroon. International GeologyReview53, 759-784.
 
[30]  Tchameni, R., Pouclet, A., Penaye, J., Ganwa, A.A., Toteu, S.F., 2006. Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. Journal of African Earth Sciences 44, 511-529.
 
[31]  Kankeu, B., Greiling, R.O., 2006. Magnetic fabrics (AMS) and transpression in the Neoproterozoic basement of Eastern Cameroon (Garga-Sarali area). Neuesjahrbuch fur Geologie und PalaeontologieAbhandlungen, 239, 263-287.
 
[32]  Kankeu, B., Greiling, R.O., Nzenti, J.P., Ganno, S., Ngnotué, T., Basahak, J., Hell, J.V., 2010. Application de la technique de l’Anisotropie de la Susceptibilité Magnétique (ASM) à l’identification des structures géologiques : le cisaillement panafricain de Bétaré-Oya dans le district aurifère de l’Est Cameroun. Annales de la faculté des Sciences, Série Sciences de la Terre 38 (1), 17-30.
 
[33]  Maignien, R., 1980. Manuel pour la description des sols sur le terrain. O.R.S.T.O.M-Paris, 145 p.
 
[34]  Burnham and Schweyer., 2004. Trace element analysis of geological samples by inductively coupled plasma mass spectrometry at the Geoscience Laboratories: Revised capabilities due to improvements to instrumentation. Ontario Geological Survey, 54, 1-20.
 
[35]  Anders and Grevesse., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica and Cosmochimica Acta, 53, 197-214.
 
[36]  Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 279, 715-717.
 
[37]  Parker, A., 1970. An index of weathering for silicate rocks. Geological Magazine 107, 501-504.
 
[38]  Babechuck, M.G., Widdowson, M., Kamber, B. S., 2014. Quantifying chemical intensity and trace element release from two contrasting profiles, Decan Traps, India. Chemical Geology, 365, 56-75.
 
[39]  Schwertmann, U., Pfab, G., 1996. Structural V and Cr in lateritic iron oxides: genetic implications. Geochimica et Cosmochimica Acta, 60, 4279-4283.
 
[40]  Dempster Michael, Paul Dunlop, Andreas Scheib and Mark Cooper., 2013. Principal component analysis of the geochemistry of soil developed on till in Northern Ireland, Journal of Maps.
 
[41]  Smee. B.W and Grunsky. E.C., 2003. Enhancements in the Interpretation of Geochemical Data using Multivariate Methods and Digital Topography. Explore - Association of Exploration Geochemists Newsletter.
 
[42]  Massart, D.L. and Kaufman, L., 1983. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis. John Wiley & Sons, New York.
 
[43]  Migoń P, Lidmar-Bergström K, 2001. Deep weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth Science Reviews, 56, 285-324.
 
[44]  Olvmo, M., 2010. Review of denudation processes and quantification of weathering and erosion rates at a 0.1 to 1Ma time scale. Technical report, TR-09-18, Univ. Gothenburg, 50p.
 
[45]  Tijani, M.N., Okunlola, O.A., Abimbola, A.F., 2006. Lithogenic concentrations of trace metals in soils and saprolites over crystalline basement rocks: A case study from SW Nigeria. Journal of African Earth Sciences 46, 427-438.
 
[46]  Dubroeucq. D., Geissert. D., Quantin. P., 1998. Weathering and soil-forming processes under semi-arid conditions in two Mexican volcanic ash soils. Geoderma 86: 99-122.
 
[47]  Nahon, D., 1991. Introduction to the petrology of soils and chemical weathering. A Wiley Interscience Publication, 313 p.
 
[48]  Shoji. S., Dahlgren. R., Nanzyo. M., 1993. Morphology of Volcanic Ash Soils. Developments in Soil Science, 21, 7-3.
 
[49]  Ambrosi, J.P., Nahon, D., 1986. Petrological and geochemical differentiation of lateritie iron crust profiles. Chemical Geology, 57, 371-393.
 
[50]  Aleva, 1994. Laterites: Concept, Geology, Morphology and Chemistry. ISRIC, Wageningen the Netherlands, ISBN 90-6672-053-0.
 
[51]  Bitom, D., Volkoff, B., Abessolo, M., 2003. Evolution and alteration in situ of massive iron duricrust in Central Africa. Journal of African Earth Sciences, 37, 99-101.
 
[52]  Schellmann, W., 1981. Considerations on the definition and classification of laterites. Proceedings of the International Seminar on Lateritisation Processes, IGCP 129 and IAGC, Trivandrum, India. Oxford and IBH Publishing Company, New Delhi, 1-10.
 
[53]  Grimaud, J. L., 2014. Dynamique long-terme de l’érosion en contexte cratonique : l’Afrique de l’Ouest depuis l’Eocène (Thèse de Doctorat). Université Toulouse III Paul Sabatier, 302p.
 
[54]  Beauvais and Roquin., 1996. Petrological differentiation patterns and geomorphic distribution of ferricretes in Central Africa. Geoderma, 73, 63-82.
 
[55]  Lopez, J.M.G., Bauluz, B., Fernandez, C., Oliete A.Y., 2005. Factors controlling the trace element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214, 1-19.
 
[56]  Nacir El Moutouakkil and BoubkerBoukili., 2015. Interactions chimiques au niveau d’une interface micacée : cas des phlogopites magmatiques zonées de la minette de l’île de Jersey. Bulletin de la Société Royale des Sciences de Liège, 84, 175 - 193.
 
[57]  Ndjigui P.-D., Badinane B.F.M., Nyeck B., Nandjip K.H.P., Bilong, P., 2013. Mineralogical and geochemical features of the coarse saprolite developed on orthogneiss in the SW of Yaoundé. Journal of African Earth Sciences 79, 125-142.
 
[58]  Onana, V.l., Donald Ntouala, R.F., Tang, S.N., Effoudou, E.N., Kamgang, V.K., Ekodeck, G.E., 2016. Major, trace and REE geochemistry in contraghsted chlorite schist weathering profiles from southern Cameroon: Influence of the Nyong and Dja Rivers water table fluctuations in geochemical evolution processes, Journal of African Earth Sciences.
 
[59]  Etame, J., Bilong, P., Bitom, D., Robain, H., Volkoff, B., Belinga, S.M., 1998. Relation sol jaune et sol rouge dans une sequence de sols sur gneiss en zone forestière du Cameroun. Sci. Technol. Dév., 6, 1, pp. 29-37.
 
[60]  Mbenoun, A., Ngon Ngon, G., Bayiga, E., Yongue Fouateu, R., Bilong, P., 2013. Gold Behavior in Weathering Products of Quartz Vein in Mintom Area South Cameroon (Central Africa). International Journal of Geosciences, 4, 1401-1410
 
[61]  Nguetnkam, J.P., Kamga, R., Villieras, F., Ekodeck, G.E., Yvon, J., 2007. Pedogenic formation of smectites in a vertisol developed from granitic rock from Kaele (Cameroon, Central Africa). Clay Miner. 42, 486-501.
 
[62]  Zarasvandi, A., Carranza, E.J.M., Ellahi, S.S., 2012. Geological, geochemical and mineralogical characteristics of the Deh-now bauxite deposits, Zagros fold betl, Iran. Ore geology reviews, 48, 125-138.
 
[63]  Bardossy and Aleva., 1990. Lateritic bauxites. “Developments in Economic Geology,” Elsevier, Amsterdam, 27, 624.
 
[64]  Colin and Viellard., 1991. Behavior of gold in the lateritic equatorial environment: weathering and surface dispersion of residual gold particles, at Dondo Mobi, Gabon. Applied Geochemistry, 6, 279-290
 
[65]  Ekengélé, N.L., Sabine, D.D., Philémon, Z.Z., Jung, M.C., 2016. Physical and Metals Impact of Traditional Gold Mining on Soils in Kombo-Laka Area (Meїganga, Cameroon). International Journal of Geosciences, 7, 1102-1121.
 
[66]  Lacal, J., Da Silva, P.; Garci, R. ; Sevilla, M. T. ; Procopio, J. R. ; Hernandez, L., 2003. Study of fractionation and potential mobility of metal in sludge from pyrite mining and affected river sediments: changes in mobility over time and use of artificial ageing as a tool in environmental impact assessment. Environmental Pollution, 124, 291-305.
 
[67]  Bouragba et Chabou., 2015. Etude des minéralisations de la chaîne des Azerou (Bibans, Bordj Bou Arreridji). 1ères Journées Nationales d'étude sur les Géosciences, Université Ferhat Abbas. Résumé, 62-63.