Journal of Food Security
ISSN (Print): 2372-0115 ISSN (Online): 2372-0107 Website: Editor-in-chief: Monideepa Becerra
Open Access
Journal Browser
Journal of Food Security. 2018, 6(4), 155-162
DOI: 10.12691/jfs-6-4-3
Open AccessArticle

Gene Action for Grain Yield and Agronomic Traits in Selected Maize Inbred Lines with Resistance to Striga Hermonthica in Uganda

Zziwa Simon1, 2, , Lwanga Charles Kasozi2, Rubaihayo Patrick1 and Muwonge Abubaker2

1Makerere University, College of Agriculture and Environmental Sciences, P.O.BOX 7062 Kampala, Uganda

2Cereals Research Program, National Crop Resources Research Institute, P.O.BOX 7084 Kampala, Uganda

Pub. Date: December 04, 2018

Cite this paper:
Zziwa Simon, Lwanga Charles Kasozi, Rubaihayo Patrick and Muwonge Abubaker. Gene Action for Grain Yield and Agronomic Traits in Selected Maize Inbred Lines with Resistance to Striga Hermonthica in Uganda. Journal of Food Security. 2018; 6(4):155-162. doi: 10.12691/jfs-6-4-3


Combining ability of inbred lines is crucial information in maize hybrid breeding programs incorporating materials from various germplasm sources. This study was conducted to assess the gene action for grain yield and other agronomic traits for germplasm having varying resistance to Striga hermonthica and genetic. In a half diallel cross of ten parents, general and specific combining abilities for grain yield, plant and ear height, plant and ear aspect, ears and plants harvested, ear rot, husk cover, moisture and resistance to Striga hermonthica were determined. The grain yields of the single crosses were significantly higher for 1368STR x TZISTR1198, TZISTR1132 x CML442, TZISTR1174 x TZISTR1198 and TZISTR1199 x TZISTR1174. The importance of both GCA (50%) and SCA (50%) for grain yield, ear rot, ear texture and ears harvested were observed, but a preponderance of GCA was existed for AUSNPC, whereas plant and ear height, plant and ear aspect, and moisture content exhibited preponderant SCA. TZISTR1174, TZISTR1162, TZISTR1192, and CML442 were good general combiners for grain yield showing highly significant positive GCA effects of 0.40, 0.2, 0.17, and 0.22, respectively while lines TZISTR1199, TZISTR1192, TZISTR1174 and TZISTR1162 were good general combiners for resistance to Striga showing highly significant negative GCA effects of-646.99,-428.21,-338.00, and-76.51. These inbred lines could be exploited in hybrid breeding to develop high yielding Striga resistant maize varieties. Hybrids such as TZISTR1174 x CML312, TZISTR1192 x CML442and TZISTR1174 x 1368STR had significant positive SCA effects for grain yield whereas crosses like TZISTR1162×TZISTR1198, TZISTR1199×TZISTR1181, TZISTR1192×1368STR had highest negative significant SCA effects of-1453.19,-1058.28, and-808.252 for AUSNPC which can be used for direct production as single cross hybrids or developed further as three way cross hybrids.

gene action combining ability

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Keskin B.; I.H. Yilmaz and O. Arvas. 2005. Determination of some yield characters of grain corn in eastern Anatolia region of Turkey. Journal of Agronomy 4(1), 14-17.
[2]  Oyekan, P.O., Olanya, O.M., Adenle, V. and Weber, G.K. 1989. Downy mildew of maize in Nigeria; Epidemiology, distribution and importance. In: Obajimi AO (ed). Proceedings of the workshop on downy mildew disease of maize pp. 15-18.
[3]  Hallauer. A.R. and J.E. Miranda. 1981. Quantitative genetics in maize breeding. The Iowa State Univ. Press. Ames. USA. C. f .computer search.
[4]  Vacaro, E., J.F.B. Neto, D.G. Pegoraro, C.N. Nuss and L.D.H. Conceicao. 2002. Combining ability of twelve maize populations. Pesq. Agropec. Bras. 37, 67-72.
[5]  Vasal, S. K., Srinivasan, G., Beck, D.L., Cross, J., Pandey. S. and Deloen, C. 1992. Heterosis and combining ability of CIMMYT’s tropical late white maize germplasm. Maydica, 37, 217-223.
[6]  Perez-valasquez, J.C., Ceballo, S.H., Pandey, S., and Diaz, A.C. 1995. Analysis of diallel crosses among Colombian land races and improved populations of maize. Crop Science 35: 57-578.
[7]  Martinez, Z.G., Leon, C. and Humbert, D. 1993. Genetic effects on tropical maize hybrids (Zea mays) 11. Ear height, anthesis and female flowering. Agociencia (Seie Fitociancia) 4 (2), 549-552.
[8]  Iken, J.E., and Olakojo, S.A., 2002. Effects of intervarietal crosses on grain yield in maize (Zea mays.L) J. Agric. Sustainable Environ. 4: 42-47.
[9]  Murray L.W.; I.M. Ray; H. Dong and A. Segovia-Lerma. 2003. Clarification and reevaluation of population-based diallel analyses. Crop Science 43, 1930-1937.
[10]  Yingzhong, Z. 1999. Combining ability analysis of agronomic characters in sesame. The Institute of Sustainable Agriculture (IAS), CSIC, Apartado40-48, Córdoba, Spain.
[11]  Dudley J.W. and R.H. Moll. 1969. Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Science 9, 257-262.
[12]  Novoselovic, D., M. Baric, G. Drezner, J. Gunjaca and A. Lalic. (2004). Quantitative inheritance of some wheat plant traits. Genetic Molecular Biology 27(1), 92-98.
[13]  Horner E.S.; E. Magloire and J.A. Morera. 1989. Comparison of selection for S2 progeny vs. testcross performance for population improvement in maize. Crop Science 29, 868-874.
[14]  Lamkey K.R .and M. Lee. 1993. Quantitative genetics, molecular markers and plant improvement. Australian Convention and Travel Service: Canberra, p. 104-115.
[15]  Olakojo, S.A. and Olaoye, G. 2005. Combining ability for grain yield, agronomic traits and Striga lutea tolerance of maize hybrids under artificial Striga infestation; African Journal of Biotechnology 4 (9), 984-988, September 2005.
[16]  CIMMYT and Bioversity International. 2009. Key access and utilization descriptors for maize genetic resources. Bioversity International, Rome, Italy; International Maize and Wheat Improvement Center, Mexico.
[17]  Kroschel, J. 2001. A technical manual for parasitic weed research and extension. Kluwer Academic Publishers, 3300 AA Dordrecht, Netherlands.
[18]  Kim, S.K. 1994. Genetics of maize tolerance of Striga hermonthica. Crop Science 34(4), 900-907.
[19]  Rodenburg, J., Bastiaans, L., Weltzien, E. and Hess, D.E. 2005. How can selection for Striga resistance and tolerance in sorghum be improved? Field Crops Research 93, 34-50.
[20]  Payne, R.W., Murray, D.A. and Harding, S.A. 2011. An Introduction to the GenStat Command Language (14th Edition). VSN International, Hemel Hempstead, UK
[21]  Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biological Science. 9, 463-493.
[22]  Zhang, Y., Kang, M.S. 1997. DIALLEL-SAS: a SAS program for Griffing‟s diallel analyses. Agronomy Journal 89, 176-182.
[23]  Beil, G.M. and Atkins, R.E. 1967. Estimates of general and specific combining ability in F1 hybrids for grain yield and its components in grain sorghum (Sorghum vulgare Pers). Crop Science. 7(3), 225-228.
[24]  Haussmann, B.I.G., Obilana, A.B., Ayiecho, P.O., Blum, A., Schipprack, W. 2000. Yield and yield stability of four population types of grain Sorghum in a semi-arid area of Kenya. Crop Science 40: 319–329.
[25]  Badu-Apraku, B., Akinwale, R.O., Menkir, A., Coulibaly, N., Onyibe, J.E., Yallou, G.C., Abdullai, M.S., Didjera, A. 2011. Use of GGE biplot for targeting early maturing maize cultivars to mega-environment in West Africa. Africa. Crop Science 19, 79-96.
[26]  Derera, J., Tongoona, P., Vivek, B.S, van-Rij, N. and Laing, M.D.2007. Gene action determining Phaeoshaeria leaf spot disease resistance in experimental hybrids. South African Journal of Plant and Soil 24:138-144
[27]  Vivek, B., Odongo, O., Njuguna, J., Imanywoha, J., Bigirwa, G., Diallo, A. and Pixley, K. 2009. Diallel analysis of grain yield and reistance to seven diseases of 12 African maize (Zea mays L.) inbred lines publication. Euphytica DOI10.1007/s, 10681-100-9993-5.
[28]  Nass. L.t.; M. Lima; R. Vencovesky and P.B. Galo. 2000. Combining ability of maize inbred lines evaluated in three environment in Brazil. Scientica Agricola 57, 129-134.
[29]  Machado, J.C., de Souza, J.C., Ramalho, M.A and Lima, J.L. 2009. Stability of combining ability effects in maize hybrids. Scientific Agriculture 66, 494-498.
[30]  Qi, X., Kimatu, J.N., Li, Z., Jiang, L., Cui, Y. and Liu, B. 2010. Heterotic analysis using AFLP markers reveals moderate correlation between specific combining ability and genetic distance in maize inbred lines. African Journal of Biotechnology 9: 1568-1572.
[31]  Badu-Apraku, B., R.O. Akinwale, and M. Oyekunle. 2014. Efficiency of secondary traits in selecting for improved grain yield in extra-early maize under Striga-infested and Striga-free environments. Journal of Plant Breeding 133, 373-380.
[32]  Menkir, A., and Kling., J.G. 2003. Response to recurrent selection for resistance to Striga hermonthica (Del.) Benth in a tropical maize population. Crop Science 47, 674-682.
[33]  Badu-Apraku, B., Oyekunle, M., Akinwale, R. O and Aderounmu, M. 2007a. Combining Ability and Genetic Diversity of Extra-Early White Maize Inbreds under Stress and Nonstress Environments. Crop Science 53, 9-26.
[34]  Paterniani, M.E., Dudienas, C. and Gallo, P.B. 2000. Diallel crosses among maize lines with emphasis on resistance to foliar diseases. Genetic and Molecular Biology 23, 381-385.
[35]  Bello, O.B and Olaoye, G. 2009. Combining ability for maize grain yield and other agronomic characters in a typical southern guinea savanna ecology of Nigeria. Afri. J. Biotechnol. 8: 2518-2522.
[36]  Glover, M.A., Willmot, D.B., Darrah, L.L., Hibbard, B.E and Zhu, X. 2005. Diallel analyses of agronomic traits using chinese and U.S. maize germplasm. Crop Science 45, 1096-1102.
[37]  Menkir, A. and Ayodele, M. 2005. Genetic analysis of resistance to gray leaf spot of midaltitude maize inbred lines. Crop Science 45, 163-170.
[38]  Badu-Apraku, B., Oyekunle, M., Fakorede, M.A.B., Vroh, I., Akinwale, R.O., Aderounmu, M. (2013). Combining ability and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica 192, 413-433.
[39]  Xingming, F., Jing, T., Bihua, H and Feng, L. 2001. Analyses of combining ability and heterotic groups of yellow grain quality protein maize inbreds. In: Seventh Eastern and Southern Africa Regional Maize conference. 11th-15th February, 2001.
[40]  Heidari, B. and Estakhr, A. 2012. Combining ability and gene action for maturity and agronomic traits in different heterotic groups of maize inbred lines and their diallel crosses. Journal of Crop Science and Biotechnology 15, 219-229.
[41]  Ali, F., A. Shah, A. Rahman, M. Noor, M.Y. Khan, I. Ullah, and J. Yan. 2012. Heterosis for yield and agronomic attributes in diverse maize germplasm. Australia Journal of Crop Science 6, 455-462.
[42]  Amiruzzaman, M., M.M. I. slam, L. Hussan, and M.M. Rohman. 2010. Combining ability and heterosis for yield and component charcters in maize. Academic Journal of Plant Science 3, 79-84.
[43]  Estakhr, A. and B. Heidari. 2012. Combining ability and gene action for maturity and agronomic traits in different heterotic groups of maize inbred lines and their diallel crosses. Journal of Crop Science and Biotechnology 15, 219-229.
[44]  Abrha, S.W., H.Z. Zeleke, and D. W. Gissa. 2013. Line x Tester analysis of maize inbred lines for grain yield and yeld related traits. Asian Journal of Plant Science and Research 3, 12-19.
[45]  Kim, S.K. and Akintunde, A. 1994. Response of maize lines during development of Striga hermonthica infestation. Pp. 73. In Agronomy Abstracts. ASA. Madison, WI.
[46]  Omanya, G.O., Haussmann, D.E., Hess, B.V.S., Reddy, M., Kayentao, H.G. and Geiger, H.H. 2004. Utility of indirect and direct selection traits for improving Striga resistance in two sorghum recombinant inbred populations. Field Crops Research 89(2-3):237-252.
[47]  Clerget, B., Dintiger, J and Reynaud, B. 1996. Registration of maize inbred CIRAD 390 parental line. Crop Science 36, 826.
[48]  Omanya, G.O., B.I.G. Haussmann, D.E. Hess, B.V.S. Reddy, M. Kayentao, H.G. Welz, and H.H. Geiger. 2004. Utility of indirect and direct selection traits for improving Striga resistance in two sorghum recombinant inbred populations. Field Crops Research 89(2-3), 237-252.
[49]  Haussmann, B.I.G., D.E. Hess, H.G. Welz, and H.H. Geiger. 2000b. Improved methodologies for breeding Striga resistant sorghums. Field Crops Research 66(3), 195-211.
[50]  Haussmann, B. I. G., Hess, D. E., Koyama, M. L., Grivet, L., Rattude, H. F. W. and Geiger, H. H. 2000a. Breeding for Striga resistance in cereals. Margraf Verlag, Weikersheim, Germany.
[51]  Hallauer, A.R. and Miranda, F.J.B. 1988. Quantitative genetics in maize breeding. 2nd ed. Iowa State University Press, Ames.
[52]  Vivek, B.S., O.M. Odongo, J. Njuguna, J. Imanywoha, G. Bigirwa, A. Diallo, and K.V. Pixley. 2010. Diallel analysis of grain yield and resistance to seven disease of 12 African maize (Zea mays L.) inbred lines. Euphytica 172, 329-340.
[53]  Ertiro, B.T., H. Zeleke, D. Friesen, M. Blummel, and S. Twumasi-Afriyie. 2013. Relationship between the performance of parental inbred lines and hybrids for food-feed traits in maize (Zea mays L.) in Ethiopia. Field crops Research 153, 86-93.
[54]  Bertoia, L.M. and M.B. Aulicino. 2014. Maize forage amplitude: combining ability of inbred lines and stability of hybrids 10, 1-12.
[55]  Kim, S.K. 1991. Breeding maize for Striga tolerance and the development of a field infestation technique, combating Striga in Africa, IITA, Ibadan. Pp. 96-108.
[56]  Mutengwa, C., Gandiwa, N., and Muchena, S. 2012. Genetic analysis of resistance to maize streak virus disease in dwarf maize germplasm. African Journal of Agricultural Research 7(48):6456-6460.
[57]  Hung, H.-Y. and J.B. Holland. 2012. Diallel analysis of resistance to ear rot and Fumonisin contanination in maize. Crop Science 52, 2173-2181.
[58]  Storey, H.H and Howland, A.K. 1967. Transfer of resistance to the streak virus into East Africa Maize. EAAFRO Journal 33, 131-135.