Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2018, 6(12), 748-759
DOI: 10.12691/jfnr-6-12-5
Open AccessArticle

An In Silico Study: Can the Modulation of miRNA Expression through a Diet that Promotes the Production of Butyrate and Consumption of Genistein and Quercetin, Impact Cancer?

Sung-Min Jun1 and Karen S. Bishop2, 3,

1FMHS, University of Auckland, Auckland 1023, New Zealand

2Auckland Cancer Society Research Centre, School of Medical Sciences, FMHS, University of Auckland, Auckland 1023, New Zealand

3Discipline of Nutrition and Dietetics, School of Medical Sciences, FMHS, University of Auckland, Auckland 1023, New Zealand

Pub. Date: December 24, 2018

Cite this paper:
Sung-Min Jun and Karen S. Bishop. An In Silico Study: Can the Modulation of miRNA Expression through a Diet that Promotes the Production of Butyrate and Consumption of Genistein and Quercetin, Impact Cancer?. Journal of Food and Nutrition Research. 2018; 6(12):748-759. doi: 10.12691/jfnr-6-12-5

Abstract

Diet plays a major role in regulating cancer. Bioactives such as polyphenols and isoflavones found naturally in our food are increasingly being recognised as regulators of interest. These compounds can regulate cancer pathways through microRNAs which are critical in modulating expression of various genes. We carried out a literature review wherein we assessed the impact of three dietary compounds, namely butyrate, genistein and quercetin, on miRNA expression followed by an in silico study utilising DIANA-miRPathv3 software. Our literature search found that miR-34a, miR-200a-3p and miR-200b-3p were modulated by all three compounds while miR-221, miR-222, miR-29a, miR-3935 and miR-574-3p were modulated by both genistein and butyrate and let-7b, miR-194, miR-96-5p and miR-424 were modulated by butyrate and quercetin. The in silico analysis identified key pathways of interest such as “bladder cancer” which had significant interactions with the miRNAs modulated by the dietary compounds.

Keywords:
cancer miRNA butyrate genistein quercetin DIANA-mirPathv3

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Bishop, K. S., Erdrich, S., Karunasinghe, N., Han, D. Y., Zhu, S., Jesuthasan, A. and Ferguson, L. R. An investigation into the association between DNA damage and dietary fatty acid in men with prostate cancer. Nutrients. 2015, 7, 405-422.
 
[2]  Erdrich, S., Bishop, K. S., Karunasinghe, N., Han, D. Y. and Ferguson, L. R. A pilot study to investigate if New Zealand men with prostate cancer benefit from a Mediterranean-style diet. PeerJ. 2015, 3, e1080.
 
[3]  Bishop, K. S. and Ferguson, L. R. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015, 7, 922-947.
 
[4]  Tong, A. W. and Nemunaitis, J. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer gene therapy. 2008, 15, 341-355.
 
[5]  Calin, G. A. and Croce, C. M. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006, 6, 857-866.
 
[6]  Pereira, D. M., Rodrigues, P. M., Borralho, P. M. and Rodrigues, C. M. Delivering the promise of miRNA cancer therapeutics. Drug discovery today. 2013, 18, 282-289.
 
[7]  Motti, M., D'Angelo, S. and Meccariello, R. MicroRNAs, Cancer and Diet: Facts and New Exciting Perspectives. Curr Mol Pharmacol. 2018, 11, 90-96.
 
[8]  Banikazemi, Z., Haji, H. A., Mohammadi, M., Taheripak, G., Iranifar, E., Poursadeghiyan, M., Moridikia, A., Rashidi, B., Taghizadeh, M. and Mirzaei, H. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. J Cell Biochem. 2017, 119,
 
[9]  Milner, J. A. Molecular targets for bioactive food components. J Nutr. 2004, 134, 2492S-2498S.
 
[10]  Saini, S., Arora, S., Majid, S., Shahryari, V., Chen, Y., Deng, G., Yamamura, S., Ueno, K. and Dahiya, R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res. 2011, 4, 1698-1709.
 
[11]  Bae, S., Lee, E. M., Cha, H. J., Kim, K., Yoon, Y., Lee, H., Kim, J., Kim, Y. J., Lee, H. G., Jeung, H. K., Min, Y. H. and An, S. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Molecules and cells. 2011, 32, 243-249.
 
[12]  Faragó, N., Fehér, L. Z., Kitajka, K., Das, U. N. and Puskás, L. G. MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes. Lipids in health and disease. 2011, 10, 173.
 
[13]  Rizzo, G. and Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients. 2018, 10, 43.
 
[14]  Vlachos, I. S., Zagganas, K., Paraskevopoulou, M. D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T. and Hatzigeorgiou, A. G. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460-466.
 
[15]  Humphreys, K. J., Conlon, M. A., Young, G. P., Topping, D. L., Hu, Y., Winter, J. M., Bird, A. R., Cobiac, L., Kennedy, N. A., Michael, M. Z. and Le Leu, R. K. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res. 2014, 7, 786-795.
 
[16]  Humphreys, K. J., Cobiac, L., Le Leu, R. K., Van der Hoek, M. B. and Michael, M. Z. Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog. 2013, 52, 459-474.
 
[17]  Hu, S., Dong, T. S., Dalai, S. R., Wu, F., Bissonette, M. and Kwon, J. H. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One. 2011, 6,
 
[18]  Schlörmann, W., Naumann, S., Renner, C. and Glei, M. Influence of miRNA-106b and miRNA-135a on butyrate-regulated expression of p21 and Cyclin D2 in human colon adenoma cells. Genes Nutr. 2015, 10, 50.
 
[19]  Hu, S., Liu, L., Chang, E. B., Wang, J. Y. and Raufman, J. P. Butyrate inhibits pro-proliferative miR-92a by diminishing c-Myc-induced miR-17-92a cluster transcription in human colon cancer cells. Mol Cancer. 2015, 14, 180.
 
[20]  Han, R., Sun, Q., Wu, J., Zheng, P. and Zhao, G. Sodium Butyrate Upregulates miR-203 Expression to Exert Anti-Proliferation Effect on Colorectal Cancer Cells. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2016, 39, 1919-1929.
 
[21]  Pant, K., Yadav, A. K., Gupta, P., Islam, R., Saraya, A. and Venugopal, S. K. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol. 2017, 12, 340-349.
 
[22]  Xu, Z., Tao, J., Chen, P., Chen, L., Sharma, S., Wang, G. and Dong, Q. Sodium Butyrate Inhibits Colorectal Cancer Cell Migration by Downregulating Bmi-1 Through Enhanced miR-200c Expression. Mol Nutr Food Res 2018, 62, e1700844.
 
[23]  Xiao, X., Cao, Y. and Chen, H. Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells. 2018, 119, 3563-3573.
 
[24]  Hirata, H., Hinoda, Y., Shahryari, V., Deng, G., Tanaka, Y., Tabatabai, Z. L. and Dahiya, R. Genistein downregulates onco-miR-1260b and upregulates sFRP1 and Smad4 via demethylation and histone modification in prostate cancer cells. Br J Cancer. 2014, 110, 1645-1654.
 
[25]  Hirata, H., Ueno, K., Nakajima, K., Tabatabai, Z. L., Hinoda, Y., Ishii, N. and Dahiya, R. Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br J Cancer. 2013, 108, 2070-2078.
 
[26]  Sun, Q., Cong, R., Yan, H., Gu, H., Zeng, Y., Liu, N., Chen, J. and Wang, B. Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep. 2009, 22, 563-567.
 
[27]  Chen, Y., Zaman, M. S., Deng, G., Majid, S., Saini, S., Liu, J., Tanaka, Y. and Dahiya, R. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res. 2011, 4, 76-86.
 
[28]  Chiyomaru, T., Yamamura, S., Fukuhara, S., Hidaka, H., Majid, S., Saini, S., Arora, S., Deng, G., Shahryari, V., Chang, I., Tanaka, Y., Tabatabai, Z. L., Enokida, H., Seki, N., Nakagawa, M. and Dahiya, R. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PloS one. 2013, 8, e58929.
 
[29]  Xia, J., Cheng, L., Mei, C., Ma, J., Shi, Y., Zeng, F., Wang, Z. and Wang, Z. Genistein inhibits cell growth and invasion through regulation of miR-27a in pancreatic cancer cells. Curr Pharm Des. 2014, 20, 5348-5353.
 
[30]  Majid, S., Dar, A. A., Saini, S., Chen, Y., Shahryari, V., Liu, J., Zaman, M. S., Hirata, H., Yamamura, S., Ueno, K., Tanaka, Y. and Dahiya, R. Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer. Cancer Res. 2010, 70, 2809-2818.
 
[31]  Chiyomaru, T., Yamamura, S., Zaman, M. S., Majid, S., Deng, G., Shahryari, V., Saini, S., Hirata, H., Ueno, K., Chang, I., Tanaka, Y., Tabatabai, Z. L., Enokida, H., Nakagawa, M. and Dahiya, R. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PloS one. 2012, 7, e43812.
 
[32]  Xia, J., Duan, Q., Ahmad, A., Bao, B., Banerjee, S., Shi, Y., Ma, J., Geng, J., Chen, Z., Rahman, K. M., Miele, L., Sarkar, F. H. and Wang, Z. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Current drug targets. 2012, 13, 1750-1756.
 
[33]  de la Parra, C., Castillo-Pichardo, L., Cruz-Collazo, A., Cubano, L., Redis, R., Calin, G. A. and Dharmawardhane, S. Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein. Nutr Cancer. 2016, 68, 154-164.
 
[34]  Yang, Y., Zang, A., Jia, Y., Shang, Y., Zhang, Z., Ge, K., Zhang, J., Fan, W. and Wang, B. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol Lett. 2016, 12, 2189-2193.
 
[35]  Xie, J., Wang, J. and Zhu, B. Genistein inhibits the proliferation of human multiple myeloma cells through suppression of nuclear factor-kappaB and upregulation of microRNA-29b. Mol Med Rep. 2016, 13, 1627-1632.
 
[36]  Wei, D., Yang, L., Lv, B. and Chen, L. Genistein suppresses retinoblastoma cell viability and growth and induces apoptosis by upregulating miR-145 and inhibiting its target ABCE1. Mol Vis. 2017, 23, 385-394.
 
[37]  Lou, G., Liu, Y., Wu, S., Xue, J., Yang, F., Fu, H., Zheng, M. and Chen, Z. The p53/miR-34a/SIRT1 Positive Feedback Loop in Quercetin-Induced Apoptosis. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015, 35, 2192-2202.
 
[38]  Sonoki, H., Sato, T., Endo, S., Matsunaga, T., Yamaguchi, M., Yamazaki, Y., Sugatani, J. and Ikari, A. Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells. Nutrients. 2015, 7, 4578-4592.
 
[39]  Tao, S. F., He, H. F. and Chen, Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Molecular and cellular biochemistry. 2015, 402, 93-100.
 
[40]  Nwaeburu, C. C., Bauer, N., Zhao, Z., Abukiwan, A., Gladkich, J., Benner, A. and Herr, I. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget. 2016, 7, 58367-58380.
 
[41]  Nwaeburu, C. C., Abukiwan, A., Zhao, Z. and Herr, I. Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer. Mol Cancer. 2017, 16, 23.
 
[42]  McOrist, A. L., Miller, R. B., Bird, A. R., Keogh, J. B., Noakes, M., Topping, D. L. and Conlon, M. A. Fecal Butyrate Levels Vary Widely among Individuals but Are Usually Increased by a Diet High in Resistant Starch. J. Nutr. 2011, 141, 883-889.
 
[43]  Uckun, F. M., Messinger, Y., Chen, C.-L., O’Neill, K., Myers, D. E., Goldman, F., Hurvitz, C., Casper, J. T. and Levine, A. Treatment of Therapy-Refractory B-Lineage Acute Lymphoblastic Leukemia with an Apoptosis-inducing CD19-directed Tyrosine Kinase Inhibitor. Clin Cancer Res. 1999, 5, 3906-3913.
 
[44]  Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H. and Yin, Y. Quercetin, Inflammation and Immunity. Nutrients. 2016, 8, 167.
 
[45]  Fukutake, M., Takahashi, M., Ishida, K., Kawamura, H., Sugimura, T. and Wakabayashi, K. Quantification of genistein and genistin in soybeans and soybean products. 1996, 34, 457-461.
 
[46]  Nishimuro, H., Ohnishi, H., Sato, M., Ohnishi-Kameyama, M., Matsunaga, I., Naito, S., Ippoushi, K., Oike, H., Nagata, T., Akasaka, H., Saitoh, S., Shimamoto, K. and Kobori, M. Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan. Nutrients. 2015, 7, 2345-2358.
 
[47]  Somerset, S. and Papier, K. A food frequency questionnaire validated for estimating dietary flavonoid intake in an Australian population. Nutr Cancer. 2014, 66, 1200-1210.
 
[48]  Choi, S. W. and Friso, S. Epigenetics: A New Bridge between Nutrition and Health. Adv Nutr. 2010, 1, 8-16.
 
[49]  Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z. and Oren, M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007, 26, 731-743.
 
[50]  Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., Feldmann, G., Yamakuchi, M., Ferlito, M., Lowenstein, C. J., Arking, D. E., Beer, M. A., Maitra, A. and Mendell, J. T. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007, 26, 745-752.
 
[51]  Giono, L. E. and Manfredi, J. J. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 2006, 209, 13-20.
 
[52]  Vogelstein, B., Lane, D. and Levine, A. J. Surfing the p53 network. Nature. 2000, 408, 307-310.
 
[53]  Subramaniam, D., Ponnurangam, S., Ramamoorthy, P., Standing, D., Battafarano, R. J., Anant, S. and Sharma, P. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PloS one. 2012, 7, e30590.
 
[54]  Dai, X., Li, M. and Geng, F. Omega-3 Polyunsaturated Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid Enhance Dexamethasone Sensitivity in Multiple Myeloma Cells by the p53/miR-34a/Bcl-2 Axis. Biochemistry. 2017, 82, 826-833.
 
[55]  Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y. and Goodall, G. J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008, 10, 593-601.
 
[56]  Okumura, T., Kojima, H., Miwa, T., Sekine, S., Hashimoto, I., Hojo, S., Nagata, T. and Shimada, Y. The expression of microRNA 574-3p as a predictor of postoperative outcome in patients with esophageal squamous cell carcinoma. World J Surg Oncol. 2016, 14, 228.
 
[57]  le Sage, C., Nagel, R., Egan, D. A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Maira, G., Mercatelli, N., Ciafre, S. A., Farace, M. G. and Agami, R. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007, 26, 3699-3708.
 
[58]  Galardi, S., Mercatelli, N., Farace, M. G. and Ciafre, S. A. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res. 2011, 39, 3892-3902.
 
[59]  Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G. V., Ciafre, S. A. and Farace, M. G. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem. 2007, 282, 23716-23724.
 
[60]  Cui, Y., Su, W. Y., Xing, J., Wang, Y. C., Wang, P., Chen, X. Y., Shen, Z. Y., Cao, H., Lu, Y. Y. and Fang, J. Y. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PloS one. 2011, 6, e25872.
 
[61]  Brunet Vega, A., Pericay, C., Moya, I., Ferrer, A., Dotor, E., Pisa, A., Casalots, A., Serra-Aracil, X., Oliva, J. C., Ruiz, A. and Saigi, E. microRNA expression profile in stage III colorectal cancer: circulating miR-18a and miR-29a as promising biomarkers. Oncol Rep. 2013, 30, 320-326.
 
[62]  Chen, Y., Wei, Q., Chen, X., Li, C., Cao, B., Ou, R., Hadano, S. and Shang, H.-F. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis. Front Mol Neurosci. 2016, 9, 69.
 
[63]  Dong, P., Karaayvaz, M., Jia, N., Kaneuchi, M., Hamada, J., Watari, H., Sudo, S., Ju, J. and Sakuragi, N. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene. 2013, 32, 3286-3295.
 
[64]  Sundaram, P., Hultine, S., Smith, L. M., Dews, M., Fox, J. L., Biyashev, D., Schelter, J. M., Huang, Q., Cleary, M. A., Volpert, O. V. and Thomas-Tikhonenko, A. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res. 2011, 71, 7490-7501.
 
[65]  Forrest, A. R., Kanamori-Katayama, M., Tomaru, Y., Lassmann, T., Ninomiya, N., Takahashi, Y., de Hoon, M. J., Kubosaki, A., Kaiho, A., Suzuki, M., Yasuda, J., Kawai, J., Hayashizaki, Y., Hume, D. A. and Suzuki, H. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia. 2010, 24, 460-466.
 
[66]  Gao, Y., Meng, H., Liu, S., Hu, J., Zhang, Y., Jiao, T., Liu, Y., Ou, J., Wang, D., Yao, L., Liu, S. and Hui, N. LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet. 2015, 24, 841-852.
 
[67]  Shi, Y., Zhao, Y., Shao, N., Ye, R., Lin, Y., Zhang, N., Li, W., Zhang, Y. and Wang, S. Overexpression of microRNA-96-5p inhibits autophagy and apoptosis and enhances the proliferation, migration and invasiveness of human breast cancer cells. Oncol Lett. 2017, 13, 4402-4412.
 
[68]  Kuhajda, F. P. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition. 2000, 16, 202-208.
 
[69]  Menendez, J. A. and Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007, 7, 763-777.
 
[70]  Kuhajda, F. P. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 2006, 66, 5977-5980.
 
[71]  Currie, E., Schulze, A., Zechner, R., Walther, T. C. and Farese, R. V., Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013, 18, 153-161.
 
[72]  Harvey, K. F., Zhang, X. and Thomas, D. M. The Hippo pathway and human cancer. Nat Rev Cancer. 2013, 13, 246-257.