Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2018, 6(9), 576-583
DOI: 10.12691/jfnr-6-9-6
Open AccessArticle

Host-Microbial Gut Interactions and Mushroom Nutrition

Victoria Bell1, Jorge Ferrão2, Eusébio Chaquisse3 and Tito Fernandes4,

1Faculty of Pharmacy, Coimbra University, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal

2The Vice-Chancellor’s Office, Universidade Pedagógica, Rua João Carlos Raposo Beirão 135, Maputo, Moçambique

3National Institute of Health, Ministry of Health, Av 24 Julho, Maputo, Mozambique

4Faculty of Veterinary Medicine, Lisbon University, 1300-477 Lisboa, Portugal

Pub. Date: September 20, 2018

Cite this paper:
Victoria Bell, Jorge Ferrão, Eusébio Chaquisse and Tito Fernandes. Host-Microbial Gut Interactions and Mushroom Nutrition. Journal of Food and Nutrition Research. 2018; 6(9):576-583. doi: 10.12691/jfnr-6-9-6


There is a tremendous complexity of the human gut microbiota in both health and disease states and a healthy microbiota consists of an inter-dependent network of microbes rather than a particular bacterial genera. The microbiota of the gastrointestinal tract is a symbiotic partner of the host as it is crucial for maintaining homeostasis and multiple components of the host immune system. Numerous host factors influence the composition of the microbiota early in life including diet, hygiene, environmental contacts, antibiotic use, and breastfeeding. Although the content of any diet can effect bacterial composition, it cannot be suggested that diet alone is responsible for the diversity of the microbiota or its variation among individuals. The intestinal physical-chemical barrier forms part of the intestinal immune system and plays a critical role in determining the composition of the microbiota. There are multiple recognised clinical uses of mushrooms due to their content in β-glucans, important antioxidant and cytoprotective enzymes, secondary metabolites and still other unknown factors. Mushroom β-glucans have been proposed to act as "biological response modifiers" based on their effects on the immune system, enhancing the body's own use of macrophages and T-lymphocytes, rather than directly attacking any tumours, controlling oxidative stress and inflammation.

microbiota mushroom β-glucans immunity gut

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. (2012) The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol. 129: 1204-1208.
[2]  Lurie-Weinberger MN, Gophna U (2015) Archaea in and on the Human Body: Health Implications and Future Directions. PLoS Pathog 11(6): e1004833.
[3]  Fallon PG, Alcami A. (2006). Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol. 2006 Oct; 27(10):470-6. Epub 2006 Aug 21.
[4]  Xu J, Gordon JI. (2003). Honor thy symbionts. Proc. Natl. Acad. Sci. USA 100: 10452-10459.
[5]  Surana NK, Kasper DL. (2012). The yin yang of bacterial polysaccharides: Lessons learned from B. fragilis PSA. Immunol Rev. 2012 Jan; 245(1): 13-26.
[6]  Gershon M. (1998). The Second Brain: The Scientific Basis of Gut Instinct and a Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestines. Publisher: Harper; 1 edition (October 7, 1998).
[7]  Furness JB. (2008).The Enteric Nervous System. John Wiley & Sons. pp. 35-38.
[8]  Miron J, Ben-Ghedalia D, Morrison M. (2001). Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci. 2001 Jun; 84(6): 1294-309.
[9]  Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J; MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. (2011) Enterotypes of the human gut microbiome.
[10]  Yazawa S, Takahashi R, Yokobori T, Sano R, Mogi A, Saniabadi AR, Kuwano H, Asao T. (2016). Fucosylated Glycans in α1-Acid Glycoprotein for Monitoring Treatment Outcomes and Prognosis of Cancer Patients. Singh PK, ed. PLoS ONE. 2016; 11(6): e0156277.
[11]  Grass J, Pabst M, Kolarich D, Pöltl G, Léonard R, Brecker L, Altmann F. (2011). Discovery and Structural Characterization of Fucosylated Oligomannosidic N-Glycans in Mushrooms. February 25, 2011. The Journal of Biological Chemistry. 286, 5977-5984.
[12]  Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. (2011). Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiol. Mol. Biol. Rev. December 2011 vol. 75 no. 4 583-609.
[13]  Tarkka MT, Sarniguet A, Frey-Klett P. (2009). Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr. Genet. 55: 233-243.
[14]  Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (October 7, 2011). "Linking long-term dietary patterns with gut microbial enterotypes". Science. 334 (6052): 105-8.
[15]  Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. (2008). High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605-1615.
[16]  Salvucci E. (2014). Microbiome, holobiont and the net of life. Critical Reviews in Microbiology: 1-10.
[17]  Littman DR, Pamer EG. (2011). Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011 Oct 20; 10(4): 311-23.
[18]  Arora NK, Kim MJ, Kang SC, Maheshwari DK. (2007). Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53: 207-212.
[19]  Inman M (2011) How Bacteria Turn Fiber into Food. PLoS Biol 9 (12): e1001227.
[20]  Mazmanian SK, Round JL, Kasper DL. (2008). A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008 May 29; 453(7195): 620-5.
[21]  The Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature. 2012 Jun 14; 486(7402): 207-214. Published online 2012 Jun 13.
[22]  Rea K, G.Dinan TG, Cryan JF. (2016). The microbiome: A key regulator of stress and neuroinflammation. Neurobiology of Stress. Volume 4, October 2016, Pages 23-33.
[23]  Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG. (2016). Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clinical Nutrition Experimental. Volume 6, April 2016, Pages 25-38.
[24]  Jayachandran M, Xiao J, Xu B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. International Journal of Molecular Sciences. 2017; 18(9): 1934.
[25]  Ferrão J, Bell V, Calabrese V, Pimentel L, Pintado M, Fernandes TH. Impact of Mushroom Nutrition on Microbiota and Potential for Preventative Health. Journal of Food and Nutrition Research. Vol. 5, No. 4, 2017, pp 226-233.
[26]  Karmali A. (2017). Comparative Enzyme Analysis of Inonotus obliquus (Chaga), Auricularia auricula and Poria cocos. Clin J Mycol. 2017; 5: 2-4.
[27]  Trovato A, Pennisi M, Crupi R, Di Paola R, Alario A, Modafferi S, Di Rosa G, Fernandes T, Signorile A, Maiolino L, Cuzzocrea S, Calabrese V. (2017). Neuroinflammation and Mitochondrial Dysfunction in the Pathogenesis of Alzheimer’s Disease: Modulation by Coriolus Versicolor (Yun-Zhi) Nutritional Mushroom. J Neurol Neuromed (2017) 2(1): 19-28.
[28]  Pillai R, Redmond M, Röding J. (2005). Anti-Wrinkle Therapy: Significant New Findings in the Non-Invasive Cosmetic Treatment of Skin Wrinkles with Beta-Glucan. The Global Publication of the International Federation of Societies of Cosmetic Chemists. Vol.8.Nº1.
[29]  Yuen JWM, Gohel MDI. (2005). Anticancer Effects of Ganoderma lucidum: A Review of Scientific Evidence. Journal Nutrition and Cancer. Volume 53, 2005 - Issue 1.
[30]  Ng TB (1998). A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol 30 (1): 1-4.
[31]  Beckmann L, Simon O, Vahjen W. (2006). Isolation and identification of mixed linked beta -glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1,3-1,4-beta -glucanase activities. J Basic Microbiol. 2006; 46(3): 175-85.
[32]  Kim MJ, Hong SY, Kim SK, Cheong C, Park HJ, Chun HK, Jang KH, Yoon BD, Kim CH, Kang SA. (2009). β-glucan enhanced apoptosis in human colon cancer cells SNU-C4. Nutr Res Pract. 2009 Fall; 3(3): 180-4.
[33]  Fullerton SA, Samadi AA, Tortorelis DG, Choudhury MS, Mallouh C, Tazaki H, Konno S. (2000). Induction of apoptosis in human prostatic cancer cells with beta-glucan (Maitake mushroom polysaccharide). Mol Urol. 2000. Spring; 4(1): 7-13. PMID: 10851301.
[34]  Lam, K-L, Cheung P. (2013). Non-digestible long chain beta-glucans as novel prebiotics. Bioactive Carbohydrates and Dietary Fibre. 2. 45-64.
[35]  Battaglia E, Benoit I, Brink J, Wiebenga A, Coutinho PM, Henrissat B, Vries RP. (2011). Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genomics. 2011; 12: 38.
[36]  van den Brink J, de Vries RP. (2011). Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011 Sep; 91(6): 1477-1492. Published online 2011 Jul 23.
[37]  Barros AB, Bell V, Ferrão J, Calabrese V, Fernandes TH. (2016). Mushroom Biomass: Some Clinical Implications of β-Glucans and Enzymes. Curr Res Nutr Food Sci 2016; 4 (Special Issue Confernce October 2016).
[38]  Chiurchiù V, Maccarrone M. (2011). Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011 Nov 1; 15(9): 2605-41.
[39]  Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative Medicine and Cellular Longevity. 2016; 2016: 3164734.
[40]  Ribeiro B, Rangel J, Valenta OP, Baptista P, Seabra RM, Andrade PB. (2006). Contents of carboxylic acids and two phenolics and antioxidant activity of dried portuguese wild edible mushrooms. J. Agric. Food Chem. 54: 8530 8537.
[41]  Prabu M. (2015). Evaluation of phytochemicals and in vitro anti- inflammatory, anti-diabetic activity of the white oyster mushroom, Pleurotus florida.
[42]  Sommer F., Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013; 11: 227-238.
[43]  Marshall NB, Swain SL. (2011). Cytotoxic CD4 T Cells in Antiviral Immunity. Biomed Biotechnol. 954602. Published online 2011 Nov 22.
[44]  Ma L, Chen H, Zhu W, Wang Z. (2013). “Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus.” Food Research International. 50: 633-640.
[45]  Chang C-J, Lin C-S, Lu C-C, Martel J, Ko Y-F, Ojcius DM, Tseng S-F, Wu T-R, Chen, John D. Young Y-YM, Lai H-C. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications. Vol.6. Article number: 7489 (2015).