Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2018, 6(8), 537-545
DOI: 10.12691/jfnr-6-8-9
Open AccessReview Article

Effect of Dietary Intervention on Inflammatory and Endothelial Dysfunction Markers in Adults with Metabolic Syndrome: A Systematic Review

Elcy Yaned Astudillo-Muñoz1, , Diana Maria Muñoz-Pérez1 and Clara Helena González-Correa1uthor One1

1Department of Basic Sciences for Health, Electric Bioimpedance Group, Universidad de Caldas, Manizales, Colombia

Pub. Date: September 11, 2018

Cite this paper:
Elcy Yaned Astudillo-Muñoz, Diana Maria Muñoz-Pérez and Clara Helena González-Correa1uthor One. Effect of Dietary Intervention on Inflammatory and Endothelial Dysfunction Markers in Adults with Metabolic Syndrome: A Systematic Review. Journal of Food and Nutrition Research. 2018; 6(8):537-545. doi: 10.12691/jfnr-6-8-9


Abstract Chronic low-grade inflammation is associated with metabolic syndrome and obesity and is characterized by high serum concentration of inflammatory and endothelial dysfunction markers. Studies have shown that western diets may increase the risk of diabetes mellitus and cardiovascular disease; however, healthy eating interventions have been also shown to improve the inflammatory state and endothelial function. A relationship between mixed diets and markers of inflammation and endothelial dysfunction has been previously suggested, since some foods have antioxidant and anti-inflammatory activity. Therefore, we conducted a systematic review of randomized clinical trials of parallel-group or crossover design studies published in the English language that evaluated the effects of dietary interventions on inflammatory and endothelial dysfunction markers in adults with metabolic syndrome. The literature search included electronic databases, manual search, and peer-reviewed articles published from 2005 to 2015. Fourteen studies, with a total of 1470 participants, met the inclusion criteria. Dietary interventions ranged from 2 to 52 weeks. Half of the studies reported a positive effect of dietary interventions on inflammatory markers, being C-reactive protein the one most frequently quantified. Compared to control groups, diets rich in polyunsaturated fatty acids reduced serum CRP levels; Mediterranean diets enriched in olive oil and nuts reduced serum IL-6; and a decrease in serum ICAM levels was observed in Mediterranean diet rich in olive oil. Four of the analyzed studies measured serum TNF-alpha levels, which did not exhibit a significant variation among groups.

inflammation endothelial function biomarkers metabolic syndrome mixed diet ormat microsoft word template style insert template

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Zimmet, P., K.G. Mm Alberti, and M. Serrano Ríos, Una nueva definición mundial del síndrome metabólico propuesta por la Federación Internacional de Diabetes: fundamento y resultados. Rev Esp Cardiol, 2005. 58(12): p. 1371-1376.
[2]  Pérez, M.R. and G. Medina-Gómez, Obesidad, adipogénesis y resistencia a la insulina. Endocrinol. Nutr, 2011. 58(7): p. 360-369.
[3]  León-Pedroza, J.I., et al., Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice. Cir Cir (English Edition), 2015. 83(6): p. 543-551.
[4]  Hermsdorff, H.H., et al., Efecto de la dieta en la inflamación crónica y de bajo grado relacionada con la obesidad y el síndrome metabólico. Endocrinol. Nutr, 2008. 55(9): p. 409-419.
[5]  McArdle, M.A., et al., Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol, 2013. 4: p. 52.
[6]  Galic, S., J.S. Oakhill, and G.R. Steinberg, Adipose tissue as an endocrine organ. Mol Cell Endocrinol, 2010. 316(2): p. 129-139.
[7]  Hayden, M.S. and S. Ghosh, Shared principles in NF-κB signaling. Cell, 2008. 132(3): p. 344-362.
[8]  Castilla, M.S., A.G. de Lorenzo, and J.L. Martínez, Respuesta inflamatoria sistematica: fisiopatologia y mediadores. Med Intensiva, 2000. 24(8): p. 353-360.
[9]  Manabe, I., Chronic inflammation links cardiovascular, metabolic and renal diseases. Circulation, 2011. 75(12): p. 2739-2748.
[10]  Baker, R.G., M.S. Hayden, and S. Ghosh, NF-kappa B, inflammation, and metabolic disease. Cell Metab, 2011. 13(1): p. 11-22.
[11]  Lee, Y., D. Kang, and S.-A. Lee, Effect of dietary patterns on serum C-reactive protein level. Nutr Metab Cardiovasc Dis, 2014. 24(9): p. 1004-1011.
[12]  Cachofeiro, V., et al., Obesidad, inflamación y disfunción endotelial. Rev Esp Obes, 2006. 4(4): p. 195-204.
[13]  Bermudez, E.A., et al., Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol, 2002. 22(10): p. 1668-1673.
[14]  Shah, T., et al., Critical appraisal of CRP measurement for the prediction of coronary heart disease events: new data and systematic review of 31 prospective cohorts. Int J Epidemiol, 2008. 38(1): p. 217-231.
[15]  Ramírez, M.A. and C.R. Sánchez, Relation of serum levels of C-reactive protein to anthropometric meaurements; a sustematic review of studies in South America. Nutr Hosp. 2012;27(4):971-7.
[16]  Maury, E. and S. Brichard, Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol, 2010. 314(1): p. 1-16.
[17]  Fan, N., et al., Midkine, a potential link between obesity and insulin resistance. PloS one, 2014. 9(2): p. e88299.
[18]  Haluzik, M., J. Parizkova, and M. Haluzik, Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiol Res, 2004. 53(2): p. 123-130.
[19]  Lima Vieira, R.A., R. Nascimento de Freitas, and A.C. Pinheiro Volp, Adhesion molecules and chemokines: relation to anthropometric, body composition, biochemical and dietary variables. Nutr Hosp, 2014. 30(2).
[20]  Gomes, F., et al., Obesidade e doença arterial coronariana: papel da inflamação vascular. Arq Bras Cardiol, 2010. 94(2): p. 273-279.
[21]  Gustafson, B., Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb, 2010. 17(4): p. 332-41.
[22]  Vachharajani, V. and D.N. Granger, Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life, 2009. 61(4): p. 424-30.
[23]  Ahluwalia, N., et al., Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab, 2013. 39(2): p. 99-110.
[24]  Chong, M.F.-F., R. Macdonald, and J.A. Lovegrove, Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr, 2010. 104(S3): p. S28-S39.
[25]  Peairs, A.T. and J.W. Rankin, Inflammatory response to a high‐fat, low‐carbohydrate weight loss diet: effect of antioxidants. Obesity, 2008. 16(7): p. 1573-1578.
[26]  Van Horn, L., et al., The evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc, 2008. 108(2): p. 287-331.
[27]  Richard, C., et al., Effect of the Mediterranean diet with and without weight loss on markers of inflammation in men with metabolic syndrome. Obesity, 2013. 21(1): p. 51-57.
[28]  Schwingshackl, L. and G. Hoffmann, Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis, 2014. 24(9): p. 929-939.
[29]  Esposito, K., et al., Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. Jama, 2004. 292(12): p. 1440-1446.
[30]  Habauzit, V. and C. Morand, Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chronic Dis, 2012. 3(2): p. 87-106.
[31]  Mozaffarian, D., et al., Cereal, fruit, and vegetable fiber intake and the risk of cardiovascular disease in elderly individuals. Jama, 2003. 289(13): p. 1659-1666.
[32]  Chuang, C.C., et al., Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr, 2010. 92(6): p. 1511-21.
[33]  Jenkins, D., et al., Direct comparison of dietary portfolio vs statin on C-reactive protein. Eur J Clin Nutr, 2005. 59(7): p. 851.
[34]  Ajani, U.A., E.S. Ford, and A.H. Mokdad, Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. J Nutr, 2004. 134(5): p. 1181-1185.
[35]  Bogdanski, P., et al., Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res, 2012. 32(6): p. 421-427.
[36]  Ellis, C.L., et al., Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. J Atheroscler Thromb, 2011. 18(4): p. 318-327.
[37]  Monagas, M., et al., Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease–. Am J Clin Nutr, 2009. 90(5): p. 1144-1150.
[38]  Organization, W.H., World health statistics. http://www. who. int/gho/publications/world_health_statistics/EN_WHS2012_Full. pdf, 2012.
[39]  Kralova Lesna, I., et al., Effect of different types of dietary fatty acids on subclinical inflammation in humans. Physiol Res, 2013. 62(2): p. 145-52.
[40]  Urpi-Sarda, M., et al., The Mediterranean Diet Pattern and Its Main Components Are Associated with Lower Plasma Concentrations of Tumor Necrosis Factor Receptor 60 in Patients at High Risk for Cardiovascular Disease–. J Nutr, 2012. 142(6): p. 1019-1025.
[41]  Mena, M.-P., et al., Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet–. Am J Clin Nutr, 2008. 89(1): p. 248-256.
[42]  De Mello, V., et al., A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: the Sysdimet study. Diabetologia, 2011. 54(11): p. 2755.
[43]  Vitaglione, P., et al., Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber–. Am J Clin Nutr, 2014. 101(2): p. 251-261.
[44]  Andersson, A., et al., Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J Nutr, 2007. 137(6): p. 1401-1407.
[45]  Giacco, R., et al., Effects of rye and whole wheat versus refined cereal foods on metabolic risk factors: a randomised controlled two-centre intervention study. Clin Nutr, 2013. 32(6): p. 941-949.
[46]  Brownlee, I.A., et al., Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention. Br J Nutr, 2010. 104(1): p. 125-134.
[47]  de Munter, J.S., et al., Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS medicine, 2007. 4(8): p. e261.
[48]  Lappi, J., et al., Do large intestinal events explain the protective effects of whole grain foods against type 2 diabetes? Crit Rev Food Sci Nutr, 2013. 53(6): p. 631-640.
[49]  Voon, P.T., et al., Diets high in palmitic acid (16: 0), lauric and myristic acids (12: 0+ 14: 0), or oleic acid (18: 1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults–. Am J Clin Nutr, 2011. 94(6): p. 1451-1457.
[50]  Ruth, M.R., et al., Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism, 2013. 62(12): p. 1779-87.
[51]  Steffen, B.T., et al., Obesity modifies the association between plasma phospholipid polyunsaturated fatty acids and markers of inflammation: the Multi-Ethnic Study of Atherosclerosis. Int J Obes (2005), 2012. 36(6): p. 797-804.
[52]  Li, Y., et al., Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J Am Coll Cardiol, 2015. 66(14): p. 1538-1548.
[53]  Jakobsen, M.U., et al., Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr, 2009. 89(5): p. 1425-32.
[54]  Mozaffarian, D. and R. Clarke, Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur J Clin Nutr, 2009. 63(S2): p. S22.
[55]  Farré, A.L. and C. Macaya, Efectos antitrombóticos y antiinflamatorios de los ácidos grasos omega-3. Rev Esp Cardiol, 2006. 6(4): p. 31D-37D.
[56]  Tousoulis, D., et al., Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis, 2014. 232(1): p. 10-16.
[57]  A., H.D. and P.A. C., N‐3 polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes and inhibit antigen presentation in vitro. Clin Exp Immunol, 1997. 110(3): p. 516-523.
[58]  Kondo, K., et al., A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial. Metabolism, 2014. 63(7): p. 930-940.
[59]  Miles, E.A., et al., Influence of age and dietary fish oil on plasma soluble adhesion molecule concentrations. Clin Sci, 2001. 100(1): p. 91-100.
[60]  Baker, E.J., et al., Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res, 2016. 64: p. 30-56.
[61]  Watzl, B., et al., A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men–. Am J Clin Nutr, 2005. 82(5): p. 1052-1058.
[62]  Crane, T.E., et al., Increasing the Vegetable Intake Dose Is Associated with a Rise in Plasma Carotenoids without Modifying Oxidative Stress or Inflammation in Overweight or Obese Postmenopausal Women–3. J Nutr, 2011. 141(10): p. 1827-1833.
[63]  Valtueña, S., et al., Food selection based on total antioxidant capacity can modify antioxidant intake, systemic inflammation, and liver function without altering markers of oxidative stress–. Am J Clin Nutr, 2008. 87(5): p. 1290-1297.
[64]  Giacco, R., et al., A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis, 2014. 24(8): p. 837-844.
[65]  Damasceno, N., et al., Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers. Nutr Metab Cardiovasc Dis, 2011. 21: p. S14-S20.
[66]  Yeon, J.-Y., H.-S. Kim, and M.-K. Sung, Diets rich in fruits and vegetables suppress blood biomarkers of metabolic stress in overweight women. Am J Prev Med, 2012. 54: p. S109-S115.
[67]  Zhang, J., et al., Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle-aged and elderly Chinese women. Br J Nutr, 2012. 108(8): p. 1455-1465.
[68]  Jacobs Jr, D.R., M.D. Gross, and L.C. Tapsell, Food synergy: an operational concept for understanding nutrition–. The Am J Clin Nutr, 2009. 89(5): p. 1543S-1548S.
[69]  Ceriello, A., R. Testa, and S. Genovese, Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis, 2016. 26(4): p. 285-292.