[1] | Zimmet, P., K.G. Mm Alberti, and M. Serrano Ríos, Una nueva definición mundial del síndrome metabólico propuesta por la Federación Internacional de Diabetes: fundamento y resultados. Rev Esp Cardiol, 2005. 58(12): p. 1371-1376. |
|
[2] | Pérez, M.R. and G. Medina-Gómez, Obesidad, adipogénesis y resistencia a la insulina. Endocrinol. Nutr, 2011. 58(7): p. 360-369. |
|
[3] | León-Pedroza, J.I., et al., Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice. Cir Cir (English Edition), 2015. 83(6): p. 543-551. |
|
[4] | Hermsdorff, H.H., et al., Efecto de la dieta en la inflamación crónica y de bajo grado relacionada con la obesidad y el síndrome metabólico. Endocrinol. Nutr, 2008. 55(9): p. 409-419. |
|
[5] | McArdle, M.A., et al., Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol, 2013. 4: p. 52. |
|
[6] | Galic, S., J.S. Oakhill, and G.R. Steinberg, Adipose tissue as an endocrine organ. Mol Cell Endocrinol, 2010. 316(2): p. 129-139. |
|
[7] | Hayden, M.S. and S. Ghosh, Shared principles in NF-κB signaling. Cell, 2008. 132(3): p. 344-362. |
|
[8] | Castilla, M.S., A.G. de Lorenzo, and J.L. Martínez, Respuesta inflamatoria sistematica: fisiopatologia y mediadores. Med Intensiva, 2000. 24(8): p. 353-360. |
|
[9] | Manabe, I., Chronic inflammation links cardiovascular, metabolic and renal diseases. Circulation, 2011. 75(12): p. 2739-2748. |
|
[10] | Baker, R.G., M.S. Hayden, and S. Ghosh, NF-kappa B, inflammation, and metabolic disease. Cell Metab, 2011. 13(1): p. 11-22. |
|
[11] | Lee, Y., D. Kang, and S.-A. Lee, Effect of dietary patterns on serum C-reactive protein level. Nutr Metab Cardiovasc Dis, 2014. 24(9): p. 1004-1011. |
|
[12] | Cachofeiro, V., et al., Obesidad, inflamación y disfunción endotelial. Rev Esp Obes, 2006. 4(4): p. 195-204. |
|
[13] | Bermudez, E.A., et al., Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol, 2002. 22(10): p. 1668-1673. |
|
[14] | Shah, T., et al., Critical appraisal of CRP measurement for the prediction of coronary heart disease events: new data and systematic review of 31 prospective cohorts. Int J Epidemiol, 2008. 38(1): p. 217-231. |
|
[15] | Ramírez, M.A. and C.R. Sánchez, Relation of serum levels of C-reactive protein to anthropometric meaurements; a sustematic review of studies in South America. Nutr Hosp. 2012;27(4):971-7. |
|
[16] | Maury, E. and S. Brichard, Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol, 2010. 314(1): p. 1-16. |
|
[17] | Fan, N., et al., Midkine, a potential link between obesity and insulin resistance. PloS one, 2014. 9(2): p. e88299. |
|
[18] | Haluzik, M., J. Parizkova, and M. Haluzik, Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiol Res, 2004. 53(2): p. 123-130. |
|
[19] | Lima Vieira, R.A., R. Nascimento de Freitas, and A.C. Pinheiro Volp, Adhesion molecules and chemokines: relation to anthropometric, body composition, biochemical and dietary variables. Nutr Hosp, 2014. 30(2). |
|
[20] | Gomes, F., et al., Obesidade e doença arterial coronariana: papel da inflamação vascular. Arq Bras Cardiol, 2010. 94(2): p. 273-279. |
|
[21] | Gustafson, B., Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb, 2010. 17(4): p. 332-41. |
|
[22] | Vachharajani, V. and D.N. Granger, Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life, 2009. 61(4): p. 424-30. |
|
[23] | Ahluwalia, N., et al., Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab, 2013. 39(2): p. 99-110. |
|
[24] | Chong, M.F.-F., R. Macdonald, and J.A. Lovegrove, Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr, 2010. 104(S3): p. S28-S39. |
|
[25] | Peairs, A.T. and J.W. Rankin, Inflammatory response to a high‐fat, low‐carbohydrate weight loss diet: effect of antioxidants. Obesity, 2008. 16(7): p. 1573-1578. |
|
[26] | Van Horn, L., et al., The evidence for dietary prevention and treatment of cardiovascular disease. J Am Diet Assoc, 2008. 108(2): p. 287-331. |
|
[27] | Richard, C., et al., Effect of the Mediterranean diet with and without weight loss on markers of inflammation in men with metabolic syndrome. Obesity, 2013. 21(1): p. 51-57. |
|
[28] | Schwingshackl, L. and G. Hoffmann, Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis, 2014. 24(9): p. 929-939. |
|
[29] | Esposito, K., et al., Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. Jama, 2004. 292(12): p. 1440-1446. |
|
[30] | Habauzit, V. and C. Morand, Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chronic Dis, 2012. 3(2): p. 87-106. |
|
[31] | Mozaffarian, D., et al., Cereal, fruit, and vegetable fiber intake and the risk of cardiovascular disease in elderly individuals. Jama, 2003. 289(13): p. 1659-1666. |
|
[32] | Chuang, C.C., et al., Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human adipocytes. Am J Clin Nutr, 2010. 92(6): p. 1511-21. |
|
[33] | Jenkins, D., et al., Direct comparison of dietary portfolio vs statin on C-reactive protein. Eur J Clin Nutr, 2005. 59(7): p. 851. |
|
[34] | Ajani, U.A., E.S. Ford, and A.H. Mokdad, Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. J Nutr, 2004. 134(5): p. 1181-1185. |
|
[35] | Bogdanski, P., et al., Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res, 2012. 32(6): p. 421-427. |
|
[36] | Ellis, C.L., et al., Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. J Atheroscler Thromb, 2011. 18(4): p. 318-327. |
|
[37] | Monagas, M., et al., Effect of cocoa powder on the modulation of inflammatory biomarkers in patients at high risk of cardiovascular disease–. Am J Clin Nutr, 2009. 90(5): p. 1144-1150. |
|
[38] | Organization, W.H., World health statistics. http://www. who. int/gho/publications/world_health_statistics/EN_WHS2012_Full. pdf, 2012. |
|
[39] | Kralova Lesna, I., et al., Effect of different types of dietary fatty acids on subclinical inflammation in humans. Physiol Res, 2013. 62(2): p. 145-52. |
|
[40] | Urpi-Sarda, M., et al., The Mediterranean Diet Pattern and Its Main Components Are Associated with Lower Plasma Concentrations of Tumor Necrosis Factor Receptor 60 in Patients at High Risk for Cardiovascular Disease–. J Nutr, 2012. 142(6): p. 1019-1025. |
|
[41] | Mena, M.-P., et al., Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet–. Am J Clin Nutr, 2008. 89(1): p. 248-256. |
|
[42] | De Mello, V., et al., A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: the Sysdimet study. Diabetologia, 2011. 54(11): p. 2755. |
|
[43] | Vitaglione, P., et al., Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber–. Am J Clin Nutr, 2014. 101(2): p. 251-261. |
|
[44] | Andersson, A., et al., Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J Nutr, 2007. 137(6): p. 1401-1407. |
|
[45] | Giacco, R., et al., Effects of rye and whole wheat versus refined cereal foods on metabolic risk factors: a randomised controlled two-centre intervention study. Clin Nutr, 2013. 32(6): p. 941-949. |
|
[46] | Brownlee, I.A., et al., Markers of cardiovascular risk are not changed by increased whole-grain intake: the WHOLEheart study, a randomised, controlled dietary intervention. Br J Nutr, 2010. 104(1): p. 125-134. |
|
[47] | de Munter, J.S., et al., Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS medicine, 2007. 4(8): p. e261. |
|
[48] | Lappi, J., et al., Do large intestinal events explain the protective effects of whole grain foods against type 2 diabetes? Crit Rev Food Sci Nutr, 2013. 53(6): p. 631-640. |
|
[49] | Voon, P.T., et al., Diets high in palmitic acid (16: 0), lauric and myristic acids (12: 0+ 14: 0), or oleic acid (18: 1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults–. Am J Clin Nutr, 2011. 94(6): p. 1451-1457. |
|
[50] | Ruth, M.R., et al., Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism, 2013. 62(12): p. 1779-87. |
|
[51] | Steffen, B.T., et al., Obesity modifies the association between plasma phospholipid polyunsaturated fatty acids and markers of inflammation: the Multi-Ethnic Study of Atherosclerosis. Int J Obes (2005), 2012. 36(6): p. 797-804. |
|
[52] | Li, Y., et al., Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J Am Coll Cardiol, 2015. 66(14): p. 1538-1548. |
|
[53] | Jakobsen, M.U., et al., Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr, 2009. 89(5): p. 1425-32. |
|
[54] | Mozaffarian, D. and R. Clarke, Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur J Clin Nutr, 2009. 63(S2): p. S22. |
|
[55] | Farré, A.L. and C. Macaya, Efectos antitrombóticos y antiinflamatorios de los ácidos grasos omega-3. Rev Esp Cardiol, 2006. 6(4): p. 31D-37D. |
|
[56] | Tousoulis, D., et al., Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis, 2014. 232(1): p. 10-16. |
|
[57] | A., H.D. and P.A. C., N‐3 polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes and inhibit antigen presentation in vitro. Clin Exp Immunol, 1997. 110(3): p. 516-523. |
|
[58] | Kondo, K., et al., A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial. Metabolism, 2014. 63(7): p. 930-940. |
|
[59] | Miles, E.A., et al., Influence of age and dietary fish oil on plasma soluble adhesion molecule concentrations. Clin Sci, 2001. 100(1): p. 91-100. |
|
[60] | Baker, E.J., et al., Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res, 2016. 64: p. 30-56. |
|
[61] | Watzl, B., et al., A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men–. Am J Clin Nutr, 2005. 82(5): p. 1052-1058. |
|
[62] | Crane, T.E., et al., Increasing the Vegetable Intake Dose Is Associated with a Rise in Plasma Carotenoids without Modifying Oxidative Stress or Inflammation in Overweight or Obese Postmenopausal Women–3. J Nutr, 2011. 141(10): p. 1827-1833. |
|
[63] | Valtueña, S., et al., Food selection based on total antioxidant capacity can modify antioxidant intake, systemic inflammation, and liver function without altering markers of oxidative stress–. Am J Clin Nutr, 2008. 87(5): p. 1290-1297. |
|
[64] | Giacco, R., et al., A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis, 2014. 24(8): p. 837-844. |
|
[65] | Damasceno, N., et al., Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers. Nutr Metab Cardiovasc Dis, 2011. 21: p. S14-S20. |
|
[66] | Yeon, J.-Y., H.-S. Kim, and M.-K. Sung, Diets rich in fruits and vegetables suppress blood biomarkers of metabolic stress in overweight women. Am J Prev Med, 2012. 54: p. S109-S115. |
|
[67] | Zhang, J., et al., Dietary inclusion of salmon, herring and pompano as oily fish reduces CVD risk markers in dyslipidaemic middle-aged and elderly Chinese women. Br J Nutr, 2012. 108(8): p. 1455-1465. |
|
[68] | Jacobs Jr, D.R., M.D. Gross, and L.C. Tapsell, Food synergy: an operational concept for understanding nutrition–. The Am J Clin Nutr, 2009. 89(5): p. 1543S-1548S. |
|
[69] | Ceriello, A., R. Testa, and S. Genovese, Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis, 2016. 26(4): p. 285-292. |
|