Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2018, 6(3), 158-167
DOI: 10.12691/jfnr-6-3-4
Open AccessArticle

Identification of Different Pink Pomelo Varieties by Gas Chromatography-mass Spectrometry and Olfactometry Coupled to Chemometrics

Ge Gao1, 2, Noopur Gosavi3, Xueli Pang4, Hui Zou1, Haihua Liu1, Yan Ma1, 5, Zhenzhen Xu2, and Xiaojun Liao1

1College of Food Science and Nutritional Engineering, China Agricultural University; Beijing Advanced Innovation Center for Food Nutrition and Human Health; National Engineering Research Centre for Fruit and Vegetable Processing; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China

2Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China

3Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA

4Laboratory of Quality & Safety Risk Assessment for Tobacco, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China 266101

5Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China

Pub. Date: March 14, 2018

Cite this paper:
Ge Gao, Noopur Gosavi, Xueli Pang, Hui Zou, Haihua Liu, Yan Ma, Zhenzhen Xu and Xiaojun Liao. Identification of Different Pink Pomelo Varieties by Gas Chromatography-mass Spectrometry and Olfactometry Coupled to Chemometrics. Journal of Food and Nutrition Research. 2018; 6(3):158-167. doi: 10.12691/jfnr-6-3-4


To differentiate different kinds of pink pomelos, which came from the main producing area of pink pomelo varieties in China, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry and olfactometry (GC-MS-O) was used to determinate and characterize volatile profiles of different varieties. Olefins, alcohols, ketones represented the most abundant volatile compounds in all varieties of pink pomelo juices. There are 38 aroma-active compounds perceived by the trained panel of judges by using detection frequency analysis method (DFA). Principal components analysis (PCA) combining GC-MS analysis was applied and successfully distinguished six varieties of pink pomelo juices from four different geographical regions of China, which is in accordance with their vegetal sampling location. Further, partial least squares-discriminant analysis (PLS-DA) indicated that this model is good in correlating citrus odor. Decanal, hexan-1-ol, γ-selinene could be identified as the main characteristics to distinguish different varieties.

pink pomelo geographical identification GC-MS PCA PLS-DA

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Sawamura, M.; Shichiri, K.; Ootani, Y.; Zheng, X. H., STUDIES ON THE ESSENTIAL OILS OF POMELO .4. VOLATILE CONSTITUENTS OF SEVERAL VARIETIES OF POMELOS AND CHARACTERISTICS AMONG CITRUS SPECIES. Agricultural and Biological Chemistry 1991, 55, 2571-2578.
[2]  Cheong, M. W.; Liu, S.; Zhou, W.; Curran, P.; Yu, B., Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chemistry 2012, 135, 2505-2513.
[3]  Azevedo, M. S.; Tischer Seraglio, S. K.; Rocha, G.; Balderas, C. B.; Piovezan, M.; Gonzaga, L. V.; Falkenberg, D. d. B.; Fett, R.; Leal de Oliveira, M. A.; Oliveira Costa, A. C., Free amino acid determination by GC-MS combined with a chemometric approach for geographical classification of bracatinga honeydew honey (Mimosa scabrella Bentham). Food Control 2017, 78, 383-392.
[4]  Ramirezrodrigues, M. M.; Plaza, M. L.; Azeredo, A.; Balaban, M. O.; Marshall, M. R., Physicochemical and Phytochemical Properties of Cold and Hot Water Extraction from Hibiscus sabdariffa. Journal of Food Science 2011, 76.
[5]  Vinaixa, M.; Schymanski, E. L.; Neumann, S.; Navarro, M.; Salek, R. M.; Yanes, O., Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. Trends in Analytical Chemistry 2016, 78, 23-35.
[6]  Klockmann, S.; Reiner, E.; Cain, N.; Fischer, M., Food Targeting: Geographical Origin Determination of Hazelnuts (Corylus avellana) by LC-QqQ-MS/MS-Based Targeted Metabolomics Application. Journal of Agricultural and Food Chemistry 2017, 65, 1456-1465.
[7]  Li, M.; Dai, G.; Chang, T.; Shi, C.; Wei, D.; Du, C.; Cui, H.-L., Accurate Determination of Geographical Origin of Tea Based on Terahertz Spectroscopy. Applied Sciences-Basel 2017, 7.
[8]  Zhang, X.; Liu, Y.; Li, Y.; Zhao, X., Identification of the geographical origins of sea cucumber (Apostichopus japonicus) in northern China by using stable isotope ratios and fatty acid profiles. Food Chemistry 2017, 218, 269-276.
[9]  Raymond, C. A.; Davies, N. W.; Larkman, T., GC-MS method validation and levels of methyl eugenol in a diverse range of tea tree (Melaleuca alternifolia) oils. Analytical and Bioanalytical Chemistry 2017, 409, 1779-1787.
[10]  Hemalatha, R.; Nivetha, P.; Mohanapriya, C.; Sharmila, G.; Muthukumaran, C.; Gopinath, M., Phytochemical composition, GC-MS analysis, in vitro antioxidant and antibacterial potential of clove flower bud (Eugenia caryophyllus) methanolic extract. Journal of Food Science and Technology-mysore 2016, 53, 1189-1198.
[11]  Qin, G.; Tao, S.; Cao, Y.; Wu, J.; Zhang, H.; Huang, W.; Zhang, S., Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chemistry 2012, 134, 2367-2382.
[12]  Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S. E.; Wickramasinghe, N.; Seiber, J. N.; Mitchell, A. E., HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chemistry 2014, 151, 31-39.
[13]  Wang, Y.; Yang, C.; Li, S.; Yang, L.; Wang, Y.; Zhao, J.; Jiang, Q., Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chemistry 2009, 116, 356-364.
[14]  Riuaumatell, M.; Miro, P.; Serracayuela, A.; Buxaderas, S.; Lopeztamames, E., Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC-MS. Food Research International 2014, 57, 196-202.
[15]  Shin, E.; Craft, B. D.; Pegg, R. B.; Phillips, R. D.; Eitenmiller, R. R., Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA). Food Chemistry 2010, 119, 1262-1270.
[16]  Shamsipur, M.; Yazdanfar, N.; Ghambarian, M., Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chemistry 2016, 204, 289-297.
[17]  Tufariello, M.; Capone, S.; Siciliano, P., Volatile components of Negroamaro red wines produced in Apulian Salento area. Food Chemistry 2012, 132, 2155-2164.
[18]  Singleton, V. L.; Orthofer, R.; Lamuelaraventos, R. M., Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology 1999, 299, 152-178.
[19]  Cao, X.; Bi, X.; Huang, W.; Wu, J.; Hu, X.; Liao, X., Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innovative Food Science and Emerging Technologies 2012, 16, 181-190.
[20]  Luo, D.; Chen, J.; Gao, L.; Liu, Y.; Wu, J., Geographical origin identification and quality control of Chinese chrysanthemum flower teas using gas chromatography-mass spectrometry and olfactometry and electronic nose combined with principal component analysis. International Journal of Food Science and Technology 2017, 52, 714-723.
[21]  Pang, X.; Chen, D.; Hu, X.; Zhang, Y.; Wu, J., Verification of Aroma Profiles of Jiashi Muskmelon Juice Characterized by Odor Activity Value and Gas Chromatography-Olfactometry/Detection Frequency Analysis: Aroma Reconstitution Experiments and Omission Tests. Journal of Agricultural and Food Chemistry 2012, 60, 10426-10432.
[22]  Rouseff, R. L.; Perezcacho, P. R.; Jabalpurwala, F., Historical review of citrus flavor research during the past 100 years. Journal of Agricultural and Food Chemistry 2009, 57, 8115-8124.
[23]  Gao, G.; Zhao, L.; Ma, Y.; Wang, Y.; Sun, Z.; Liao, X., Microorganisms and Some Quality of Red Grapefruit Juice Affected by High Pressure Processing and High Temperature Short Time. Food and Bioprocess Technology 2015, 8, 2096-2108.
[24]  Yu, K.; Xu, Q.; Da, X.; Guo, F.; Ding, Y.; Deng, X., Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). Bmc Genomics 2012, 13.
[25]  Zheng, H.; Zhang, Q.; Quan, J.; Zheng, Q.; Xi, W., Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chemistry 2016, 205, 112-121.
[26]  Perezcacho, P. R.; Rouseff, R. L., Fresh squeezed orange juice odor: a review. Critical Reviews in Food Science and Nutrition 2008, 48, 681-695.
[27]  Ni, H.; Hong, P.; Ji, H. F.; Sun, H.; Chen, Y. H.; Xiao, A.; Chen, F., Comparative analyses of aromas of fresh, naringinase-treated and resin-absorbed juices of pummelo by GC-MS and sensory evaluation. Flavour and Fragrance Journal 2015, 30, 245-253.
[28]  Perezcacho, P. R.; Rouseff, R. L., Processing and storage effects on orange juice aroma: a review. Journal of Agricultural and Food Chemistry 2008, 56, 9785-9796.
[29]  Julian Cuevas, F.; Moreno-Rojas, M.; Jose Ruiz-Moreno, M., Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges. Food Chemistry 2017, 221, 1930-1938.
[30]  Brattoli, M.; Cisternino, E.; Dambruoso, P. R.; De Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M., Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds. Sensors 2013, 13, 16759-16800.
[31]  Rodriguezcampos, J.; Escalonabuendia, H. B.; Orozcoavila, I.; Lugocervantes, E.; Jaramilloflores, M. E., Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International 2011, 44, 250-258.
[32]  Nocairi, H.; Qannari, E. M.; Vigneau, E.; Bertrand, D., Discrimination on latent components with respect to patterns. Application to multicollinear data. Computational Statistics & Data Analysis 2005, 48, 139-147.
[33]  Hervé, Partial Least Square Regression PLS-Regression. 2007.