Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2018, 6(2), 89-95
DOI: 10.12691/jfnr-6-2-4
Open AccessArticle

Molecular Cloning and Functional Characterisation of a Polyunsaturated Fatty Acid Elongase in a Marine Bivalve Crassostrea angulata

Hongkuan Zhang1, 2, Helu Liu1, 2, Dewei Cheng1, 2, Hongxing Liu1, 2 and Huaiping Zheng1, 2,

1Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, China

2Mariculture Research Center for Subtropical Shellfish & Algae, Guangdong Province, Shantou, China

Pub. Date: February 09, 2018

Cite this paper:
Hongkuan Zhang, Helu Liu, Dewei Cheng, Hongxing Liu and Huaiping Zheng. Molecular Cloning and Functional Characterisation of a Polyunsaturated Fatty Acid Elongase in a Marine Bivalve Crassostrea angulata. Journal of Food and Nutrition Research. 2018; 6(2):89-95. doi: 10.12691/jfnr-6-2-4

Abstract

The elongases of fatty acids (ELO) are essential for long chain polyunsaturated fatty acid (LC-PUFA) biosynthesis, and their activities depend on the substrates. The full length cDNA of Crassostrea angulata ELO (CaELO) was cloned by RACE PCR and its function was confirmed. The CaELO encodes a polypeptide of 309 amino acid residues, which containes a histidine box HXXHH motif conserved in all elongases and shares high similarity to the elongases of Chlamys nobilis and Octopus vulgaris. Phylogenetic analysis showed that the putative elongase was placed in the same group with ELOVL2 and ELOVL5, which have been demonstrated to be critical enzymes participating in the biosynthesis of PUFAs in vertebrates. When expressed in Saccharomyces cerevisiae, CaELO was able to elongate n-3 and n-6 PUFA substrates with chain lengths of C18 and C20, indicating that the CaELO had similar substrate specificities to vertebrate ELOVL5. CaELO had lower activity to elongate monounsaturated fatty acids, but had not activity to saturated fatty acids. Interestingly, the conversion rate of PUFAs depended on the length of carbon chain, the number of double bond, and n-3 / n-6 series in the species.

Keywords:
PUFA ELOVL Crassostrea angulata Biosynthesis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Vance, J. E., Vance, D. E. (Eds.). 2008. Biochemistry of lipids, lipoproteins and membranes. Elsevier.
 
[2]  Hastings, N., Agaba, M., Tocher, D. R., Leaver, M. J., Dick, J. R., Sargent, J. R., & Teale, A. J. 2001. A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. PNAS USA, 98(25), 14304-14309.
 
[3]  Liu, H., Zheng, H., Wang, S., Wang, Y., Li, S., Liu, W., & Zhang, G. 2013. Cloning and functional characterization of a polyunsaturated fatty acid elongase in a marine bivalve noble scallop Chlamys nobilis Reeve. Aquaculture, 416, 146-151.
 
[4]  Monroig, O., Guinot, D., Hontoria, F., Tocher, D. R., & Navarro, J. C. 2012. Biosynthesis of essential fatty acids in Octopus vulgaris (Cuvier, 1797): Molecular cloning, functional characterisation and tissue distribution of a fatty acyl elongase. Aquaculture, 360, 45-53.
 
[5]  Monroig, Ó., Tocher, D. R., & Navarro, J. C. 2013. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: recent advances in molecular mechanisms. Mar Drugs, 11(10), 3998-4018.
 
[6]  Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. 2014. Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv, 32(8), 1476-1493.
 
[7]  Maadane, A., Merghoub, N., Ainane, T., El Arroussi, H., Benhima, R., Amzazi, S., & Wahby, I. 2015. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J Biotechnol, 215, 13-19.
 
[8]  Pettersen, A. K., Turchini, G. M., Jahangard, S., Ingram, B. A., & Sherman, C. D. 2010. Effects of different dietary microalgae on survival, growth, settlement and fatty acid composition of blue mussel (Mytilus galloprovincialis) larvae. Aquaculture, 309(1), 115-124.
 
[9]  Sangsawangchote, S., Chaitanawisuti, N., & Piyatiratitivorakul, S. 2010. Reproductive performance, egg and larval quality and egg fatty acid composition of hatchery-reared Spotted Babylon (Babylonia areolata) broodstock fed natural and formulated diets under hatchery conditions. Int J Fish Aquaculture, 2(1), 044-048.
 
[10]  Da Costa, F., Nóvoa, S., Ojea, J., & Martínez-Patiño, D. 2011. Changes in biochemical and fatty acid composition of the razor clam Solen marginatus (Solenidae: Bivalvia) during larval development. Mar Biol, 158(8), 1829-1840.
 
[11]  O'Connor, S., Moltschaniwskyj, N., Bolch, C. J., & O'Connor, W. 2012. Dietary influence on growth and development of flat oyster, Ostrea angasi (Sowerby, 1871), larvae. Aquac Res, 43(9), 1317-1327.
 
[12]  De Moreno, J. E., Moreno, V. J., & Brenner, R. R. 1976. Lipid metabolism of the yellow clam, Mesodesma mactroides: 2-polyunsaturated fatty acid metabolism. Lipids, 11(7), 561-566.
 
[13]  Waldock, M. J., & Holland, D. L. 1984. Fatty acid metabolism in young oysters, Crassostrea gigas: polyunsaturated fatty acids. Lipids, 19(5), 332-336.
 
[14]  Zhukova, N. V. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comp Biochem Physiol. 100B (4), 801-804.
 
[15]  Zhukova, N. V., & Svetashev, V. I. 1986. Non-methylene-interrupted dienoic fatty acids in molluscs from the sea of Japan. Comp Biochem Physiol. 83B (3), 643-646.
 
[16]  Liu, H., Zhang, H., Zheng, H., Wang, S., Guo, Z., & Zhang, G. 2014. PUFA biosynthesis pathway in marine scallop Chlamys nobilis Reeve. J Agr Food Chem, 62(51), 12384-12391.
 
[17]  Chu, F. L., & Greaves, J. 1991. Metabolism of palmitic, linoleic, and linolenic acids in adult oysters, Crassostrea virginica. Mar Biol, 110 (2), 229-236.
 
[18]  Cruz-Romero, M. C., Kerry, J. P., & Kelly, A. L. 2008. Fatty acids, volatile compounds and colour changes in high-pressure-treated oysters (Crassostrea gigas). Innov Food Sci Emerg, 9 (1), 54-61.
 
[19]  Hastings, N., Agaba, M., Tocher, D. R., Leaver, M. J., Dick, J. R., Sargent, J. R., & Teale, A. J. 2001. A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. P Natl Acad Sci USA, 98(25), 14304-14309.
 
[20]  Tvrdik, P., Westerberg, R., Silve, S., Asadi, A., Jakobsson, A., Cannon, B. & Jacobsson, A. 2000. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J Cell Biol, 149(3), 707-718.
 
[21]  Agaba, M., Tocher, D. R., Dickson, C. A., Dick, J. R., & Teale, A. J. 2004. Zebrafish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic (20: 5n-3) and docosahexaenoic (22: 6n-3) acids. Mar Biotechnol, 6(3), 251-261.
 
[22]  Morais, S., Monroig, O., Zheng, X., Leaver, M. J., & Tocher, D. R. 2009. Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5-and ELOVL2-like elongases. Mar Biotechnol, 11(5), 627-639.
 
[23]  Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J. R., & Tocher, D. R. 2010. Vertebrate fatty acyl desaturase with Δ4 activity. PNAS USA, 107(39), 16840-16845.
 
[24]  Monroig, Ó., Wang, S., Zhang, L., You, C., Tocher, D. R., & Li, Y. 2012. Elongation of long-chain fatty acids in rabbitfish Siganus canaliculatus: Cloning, functional characterisation and tissue distribution of Elovl5-and Elovl4-like elongases. Aquaculture, 350, 63-70.
 
[25]  Soriguer, F., Serna, S., Valverde, E., Hernando, J., Martín-Reyes, A., Soriguer, M., & Esteva, I. 1997. Lipid, protein, and calorie content of different Atlantic and Mediterranean fish, shellfish, and molluscs commonly eaten in the south of Spain. Eur J Epidemiol, 13(4), 451-463.
 
[26]  Baby, R. L., Hasan, I., Kabir, K. A., & Naser, M. N. 2010. Nutrient analysis of some commercially important molluscs of Bangladesh. J Sci Res, 2(2), 390-396.
 
[27]  Liu, H., Zhang, H., Zheng, H., Wang, S., Guo, Z., & Zhang, G. 2014. PUFA biosynthesis pathway in marine scallop Chlamys nobilis Reeve. J Agr Food Chem, 62(51), 12384-12391.
 
[28]  Agaba, M. K., Tocher, D. R., Zheng, X., Dickson, C. A., Dick, J. R., & Teale, A. J. 2005. Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish. Comp Biochem Physiol. 142B (3), 342-352.
 
[29]  Waldock, M. J., & Holland, D. L. 1984. Fatty acid metabolism in young oysters, Crassostrea gigas: polyunsaturated fatty acids. Lipids, 19(5), 332-336.
 
[30]  Viso, A.C., Marty, J.C., 1993. Fatty acids from 28 marine microalgae. Phytochemistry 34 (6), 1521-1533.
 
[31]  Zhukova, N.V., Imbs, A.B., Yi, L.F., 1998. Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comp Biochem. Physiol. 120B (3), 499-506.
 
[32]  Zheng, X., Seiliez, I., Hastings, N., Tocher, D. R., Panserat, S., Dickson, C. A., & Teale, A. J. 2004. Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comp Bioch Physiol. Part B, 139(2), 269-279.
 
[33]  Hastings, N.; Agaba, M. K.; Tocher, D. R.; Zheng, X.; Dickson, C. A.; Dick, J. R.; Teale, A. J. 2004. Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from α-linolenic acid in Atlantic salmon (Salmo salar). Mar Biotechnol, 6, 463-474.
 
[34]  Tocher, D. R.; Zheng, X.; Schlechtriem, C.; Hastings, N.; Dick, J. R.; Teale, A. J. 2006. Highly unsaturated fatty acid synthesis in marine fish: Cloning, functional characterization, and nutritional regulation of fatty acyl Δ6 desaturase of Atlantic cod (Gadus morhua L.). Lipids 41, 1003-1016.
 
[35]  Carmona-Antoñanzas, G.; Monroig, Ó.; Dick, J. R.; Davie, A.; Tocher, D. R. 2011. Biosynthesis of very long-chain fatty acids (C> 24) in Atlantic salmon: Cloning, functional characterisation, and tissue distribution of an Elovl4 elongase. Comp Biochem Physiol. 159B, 122-129.