Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2018, 6(1), 49-55
DOI: 10.12691/jfnr-6-1-8
Open AccessArticle

Effect of the Treatment of the Olive Tree (Olea europaea L.) on the Phenolic Content and Antioxidant Properties in Olive Fruits

Gracia Patricia Blanch1, Gema Flores1, Maria C. Gómez-Jiménez2 and Maria Luisa Ruiz del Castillo1,

1Instituto de Ciencia y Tecnología de Alimentos y Nutrición. Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid

2Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Avda/ de Elvas, s/n, 06006, Badajoz

Pub. Date: January 17, 2018

Cite this paper:
Gracia Patricia Blanch, Gema Flores, Maria C. Gómez-Jiménez and Maria Luisa Ruiz del Castillo. Effect of the Treatment of the Olive Tree (Olea europaea L.) on the Phenolic Content and Antioxidant Properties in Olive Fruits. Journal of Food and Nutrition Research. 2018; 6(1):49-55. doi: 10.12691/jfnr-6-1-8

Abstract

We here investigate the effects of the application of methyl jasmonate to olive trees on antioxidant composition of olive fruits. Two cultivars (ie, Arbequina and Picual) were evaluated in our study. As a result, the total phenol content increased significantly with the treatment in Arbequina (from 155.89 to 434.22 mg gallic acid kg-1) whereas decreases were observed in Picual (from 338.27 to 127.71 mg gallic acid kg-1). Similarly, decreases in phenolic acid content were measured in Arbequina whilst no effect was observed in Picual olives. However, the contents of oleuropein and hydroxytyrosol did not increase with the pre-harvest methyl jasmonate for both Arbequina and Picual. Also for both cultivars the treatment of the olive trees increased the free radical scavenging activity of the olive fruits (IC50 from 514.36 to 1125.46 µg/mL in Arbequina and from 611.98 to 114.55 µg/mL in Picual). The results here found are deeply discussed.

Keywords:
olive fruit olive tree methyl jasmonate antioxidant pre-harvest treatment phenolics quality

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Kiritsakis, A. (1998). Olive oil-Second Edition, From the tree to the table. Food and Nutrition. Press, Inc., Trumbull, Connecticut, USA. 1998:006611.
 
[2]  Teissedre, P.L., Frankel, E.N., Waterhouse, A.L., Peleg, H. & German, J.B. (1996). Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. Journal of the Science of Food and Agriculture, 70, 55-61.
 
[3]  Visioli, F., Poli, A. & Galli, C. (2002). Antioxidant and other biological activities of phenols from olives and olive oil. Medicinal Research Reviews, 22, 65-75.
 
[4]  Benavente-García, O., Castillo, J., Lorente, J., Ortuno, A. & Del Río, J.A. (2000). Antioxidant activity of phenolics extracted from Olea europaea leaves. Food Chemistry, 68, 457-462.
 
[5]  Pereira, A.P., Ferreira, I.C.F.R., Marcelino, F., Valentao, P., Andrade, P.B., Seabra, R., Estevinho, L., Bento, A. & Pereira, J.A. (2007). Phenolic compound and antimicrobial activity of olive (Olea europaea L. cv Cobrancosa) leaves. Molecules, 12, 1153-1162.
 
[6]  Micol, V., Caturla, N., Pérez-Fons, L., Mas, V., Pérez, L. & Estepa, A. (2005). The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antiviral Research, 66, 129-136.
 
[7]  Visioli, F., Bellosta, S. & Galli, C. (1998). Oleuropein, the bitter principles of olives, enhances nitric oxide production by mouse macrophages. Life Science, 62, 541-546.
 
[8]  Andreadou, I., Illiodromitis, E.K., Mikros, E., Constantinou, M., Agalias, A., Magiatis, P., Skaltsounis, A.L., Kamber, E., Tsantili-Kakoulidou, A. & Kremastinos, D.T. (2006). The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. Journal of Nutrition, 136, 2213-2219.
 
[9]  Jemai, H., Bouaziz, M., Fki, I., El Feki, A. & Sayadi, S. (2008). Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from ChemLali olive leaves. Chemico-Biological Interactions, 176, 88-98.
 
[10]  Morton, I.W., Caccetta, R.A.A., Puddey, I.B. & Croft, K.D. (2000). Chemistry and biological effects of dietary phenolic compounds: relevance to disease. Clinical and Experimental Pharmacology and Physiology, 27,152-159.
 
[11]  Johnston, K.L., Clifford, M.N. & Morgan, L.M. (2003). Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. The American Journal of Clinical Nutrition, 78, 728-733.
 
[12]  de la Peña Moreno, F., Monagas, M., Blanch, G.P., Bartolomé, B. & Ruiz del Castillo, M.L. (2010). Enhancement of anthocyanins and selected aroma compounds in strawberry fruits through methyl jasmonate vapor treatment. European Food Research and Technology, 230, 989-999.
 
[13]  Ruiz del Castillo, M.L., Flores, G. & Blanch, G.P. (2010). Exogenous methyl jasmonate diminishes the formation of lipid-derived compounds in boiled potatoes (Solanum tuberosum L.). Journal of the Science of Food and Agriculture, 90, 2263-2267.
 
[14]  Flores, G. & Ruiz del Castillo, M.L. (2014). Influence of pre-harvest and post-harvest methyl jasmonate treatments on flavonoid content and metabolomic enzymes in red raspberry. Postharvest Biology & Technology, 97, 77-82.
 
[15]  Flores, G., Blanch, G.P. & Ruiz del Castillo, M.L. (2017). Effect of postharvest methyl jasmonate treatment on fatty acid composition and phenolic acid content in olive fruits during storage. Journal of the Science of Food and Agriculture, 97, 2767-2772.
 
[16]  González-Aguilar, G.A., Fortiz, J., Cruz, R., Baez, R. & Wang, C.Y. (2000). Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit. Journal of Agricultural and Food Chemistry, 48, 515-519.
 
[17]  Vinha, A.F., Ferreres, F., Silva, B.M., Valentao, P., Gongalves, A., Pereira, J.A., Oliveria, M.B., Seabre, R.M. & Andrade, P.B. (2005). Phenolic profiles of Portuguese olive fruits (Olea europea L.): Influence of cultivar and geographical origin. Food Chemistry, 89, 561-568.
 
[18]  Singleton, V.L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents”. American Journal of Enology and Viticulture, 16, 144-158.
 
[19]  Smith, R.C., Reeves, J.C., Dage, R.C. & Schnettler, R.A. (1987). Antioxidant properties of 2-imidazolones and 2-imidazolthiones. Biochemical Pharmacology, 36, 1457-1460.
 
[20]  Arslan, D. & Özcan, M.M. (2011). Phenolic profile and antioxidant activity of olive fruits of the Turkish variety “Sarrulak” from different locations. Grasas y Aceites, 62, 453-461.
 
[21]  Vacca, V., Fenu, P., Franco, M.A. & Sferlazzo, G. (1993). Primo approccio alla caratterizzazione dei composti fenolici di oli vergini di oliva della Sardegna: elaborazioni statistiche multivariate dei risultati in HPLC. Rivista Italian Dell Sostanze Grasse, 70, 595-599.
 
[22]  Ryan, D. & Robards, K. (1998). Phenolic compounds in olives. Analyst, 123, 31R-44R.
 
[23]  Kim, H.J., Chen, F., Wang, X. & Choi, J-H. (2006). Effect of methyl jasmonate on phenolics isothiocyanate and metabolic enzymes in radish sprout (Raphanus Sativus L.). Journal of Agricultural and Food Chemistry, 54, 7263-7269.
 
[24]  Flores, G., de la Peña Moreno, F., Blanch, G.P. & Ruiz del Castillo, M.L. (2014). Phenylalanine ammonia-lyase, flavanone 3β-hydroxylase and flavonol synthase enzyme activity by a new in vitro assay method in berry fruits. Food Chemistry, 153, 130-133.
 
[25]  Braicu, C., Pilecki, V., Balacescu, O., Irimie, A. & Berindan Neagoe, I. (2011). The relationships between biological activities and structure of flavan-3-ols. Intermolecular Journal of Molecular Sciences, 12, 9342-9353.
 
[26]  Ortega-García, F., Blanco, S., Peinado, M.A. & Peragón, J. (2008). Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea L.) cv “Picual” trees during fruit ripening. Tree Physiology, 28, 45-54.
 
[27]  Granados-Principal, S., Quiles, J.L., Ramirez-Tortosa, C.L., Sanchez-Rovira, P. & Ramirez-Tortosa, M.C. (2010). Hydroxytyrosol: From laboratory investigations to future clinical trials. Nutrition Reviews, 68, 191-206.
 
[28]  Piquemal, J., Chamayou, S., Nadaud, I., Beckert, M., Barriére, Y., Mila, I., Lapierre, C., Rigau, J., Puigdomenech, P., Jauneau, A., Digonnet, C., Boudet, A-M., Goffner, D. & Pichon, M. (2002). Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiology, 130, 1675-1685.
 
[29]  Yoruk, R. & Marshall, M.R. (2003). Physicochemical properties and function of plant polyphenol oxidase: a review. Journal of Food Biochemistry, 27, 361-422.
 
[30]  Martínez-Esplá, A., Zapata, P.J., Castillo, S., Guillén, F., Martínez-Romero, D., Valero, D. & Serrano, M. (2014). Pre-harvest application of methyl jasmonate in two plum cultivars. 1. Improvement of fruit growth and quality attributes at harvest. Postharvest Biology & Technology, 98, 98-105.
 
[31]  Kim, M.J., Chiu, Y-Ch., Kim, N.K., Park, H.M., Lee, Ch. H., Juvik, J.A. & Ku, K-M. (2017). Cultivar-Specific Changes in Primary and Secondary Metabolites in Pak Choi (Brassica Rapa, Chinensis Group) by Methyl Jasmonate. International Journal of Molecular Sciences, 18, 1004.