Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2018, 6(1), 39-48
DOI: 10.12691/jfnr-6-1-7
Open AccessArticle

Effects of Palm Olein-Olive Oil Blends on Fat Deposition in Diet-Induced Obese Mice

Soek Sin Teh1, , Siau Hui Mah2, Shiou Wah Gouk3, Phooi Tee Voon3, Augustine Soon Hock Ong4 and Yuen May Choo5

1Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia

2School of Biosciences, Taylor’s University, Lakeside Campus, Subang Jaya, Selangor, Malaysia

3Product Development and Advisory Services Division, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia

4Malaysian Oil Scientists' and Technologists' Association (MOSTA), Petaling Jaya, Selangor

5Malaysian Invention and Design Society (MINDS), Petaling Jaya, Selangor

Pub. Date: January 17, 2018

Cite this paper:
Soek Sin Teh, Siau Hui Mah, Shiou Wah Gouk, Phooi Tee Voon, Augustine Soon Hock Ong and Yuen May Choo. Effects of Palm Olein-Olive Oil Blends on Fat Deposition in Diet-Induced Obese Mice. Journal of Food and Nutrition Research. 2018; 6(1):39-48. doi: 10.12691/jfnr-6-1-7


Current knowledge on the partial replacement of palm olein with olive oil on fat deposition is inadequate, thus leading to our interest to unveil the effects of palm olein on fat deposition by using mouse model. Our findings revealed that the normalized subcutaneous adipose tissues weight, liver weight and body weight gain of mice fed with either palm olein or the blends were remarkably lower than the mice fed with olive oil. The weight of subcutaneous adipose tissues of mice fed with palm olein and blend (PO:OO=50:50) were significantly lower than the mice fed with olive oil. In addition, body weight of the mice in palm olein group were significantly lower than those fed with olive oil group. The results implied that the mice fed with palm olein and palm olein-olive oil blends are less fattening than those fed with olive oil.

Palm olein-olive oil blends regiospecific saturated fatty acids fat deposition in mice

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 2


[1]  Pearce, B.C., Parker, R.A., Deason, M.E., Dischino, D.D., Gillespie, E., Qureshi, A.A., Volk, K. and Wright, J.J. (1994). Inhibitors of cholesterol biosynthesis. 2. Hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogues of the tocotrienols. Journal of Medicinal Chemistry 37 (4): 526-541.
[2]  Zhang, J., Wang, P., Wang, C., Chen, X.S. and Ge, K. (1997). Nonhypercholesterolemic effects of a palm oil diet in Chinese adults. Journal of Nutrition 127 (3): 509S-513S.
[3]  Zhang, J., Wang, P., Dai, J., Chen, X.S. and Ge, K.Y. (1997). Palm oil diet may benefit mildly hypercholesterolemic Chinese adults. Asia Pacific Journal of Clinical Nutrition 6 (1): 22-25.
[4]  Choudhury, N., Tan, L. and Truswell, A.S. (1995). Comparison of palm olein and olive oil: effects on plasma lipids and vitamin E in young adults. American Journal of Clinical Nutrition 61: 1043-1051.
[5]  Ng, T.K.W., Hayes, K.C., DeWitt, G.F., Jegathesan, M., Path, F., Satgunasingam, N., Ong, A.S.H. and Tan, D. (1992). Dietary palmitic and oleic acids exert similar effects on serum cholesterol and lipoprotein profiles in normocholesterolemic men and women. Journal of American College of Nutrition 11 (4): 383-390.
[6]  Voon, P.T., Ng, T.K.W., Lee, V.K.M.L. and Nesaretnam, K. (2011). Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults. American Journal of Clinical Nutrition 94: 1451-1457.
[7]  Marta, G.F., Frank, B.H., Miguel, A.M.G., Montserrat, F., Monica, B., Ramon, E., Emilio, R., Dolores, C., Javier, R., Enrique, G.G., Miguel, F., Jose, L., Lluis, S.M. and et al (2014). Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Medicine 12: 78-88.
[8]  Ebaid, G.M.X., Seiva, F.R.F., Rocha, K.K.H.R., Souza, G.A. and Novelli, E.L.B. (2010). Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes. Nutrition Journal 9: 46-54.
[9]  Naghshineh, M., Ariffin, A.A., Ghazali, H., Mirhosseini, H. and Mohammad, A.S. (2010). Effect of saturated/unsaturated fatty acid ratio on physicochemical properties of palm olein-olive oil blend. Journal of the American Oil Chemists' Society 87: 255-262.
[10]  Naghshineh, M. and Mirhosseini, H. (2010). Effects of frying condition on physicochemical properties of palm olein-olive oil blends. Journal of Food, Agriculture & Environment 8 (3&4): 175-178.
[11]  Smink, W., Gerrits, W.J.J., Hovenier, R., Geelen, M.J.H., Lobee, H.W.J., Verstegen, M.W.A. and Beynen, A.C. (2008). Fatty acid digestion and deposition in boiler chickens fed diets containing either native or randomized palm oil. Poultry Science 87: 506-513.
[12]  Krohn, K., Demmelmair, H. and Koletzko, B. (2008). Chapter 7: Macronutrient requirements for growth: Fats and fatty acids. In Nutrition in Pediatrics: Basic Science, Clinical Applications, Duggan, C., Watkins, J.B. and Walker, A.W., Ed., 2008; Vol.4. pp. 59-65.
[13]  Teh, S.S., Voon, P.T., Ng, Y.T., Ong, S.H., Ong, A.S.H. and Choo, Y.M. (2016). Effects of fatty acids at different positions in the triglycerides on cholesterol levels. Journal of Oil Palm Research 28 (2): 211-221.
[14]  Teh, S.S., Voon, P.T., Ong, A.S.H. and Choo, Y.M. (2016). Incorporation of Palmitic Acid or Stearic Acid into Soybean Oils Using Enzymatic Interesterification. Journal of Oleo Science 65 (9): 797-802.
[15]  Che, H.L., Tan, D.M.Y., Meganathan, P., Gan, Y.L., Razak, G.A. and Fu, J.Y. (2015). Validation of a HPLC/FLD Method for quantification of tocotrienols in human plasma. International Journal of Analytical Chemistry 2015: 1-7.
[16]  Folch, J., Lees, M. and Stanley, G.H.S. (1957). A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. Journal of Biological Chemistry 226: 497-509.
[17]  Monaco, G., Dam, S., Ribeiro, J.L.C.N., Larbi, A. and Magalhaes, J.P. (2015). A comparison of human and mouse gene co-expression networks reveals conservation and divergence at the tissue, pathway and disease levels. BMC Evolutionary Biology 15: 259-272.
[18]  Emeson, E.E. and Shen, M.L. (1993). Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. American Journal of Pathology 142 (6): 1906-1915.
[19]  Parekh, P.I., Petro, A.E., Tiller, J.M., Feinglos, M.N. and Surwit, R.S. (1998). Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism 47 (9): 1089-1096.
[20]  Nicholson, A., Reifsnyder, P.C., Malcolm, R.D., Lucas, C.A., MacGregor, G.R., Zhang, W. and Leiter, E.H. (2010). Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide transhydrogenase (Nnt) gene. Obesity 18 (10): 1902-1905.
[21]  Brooke, M.S. (1965). The immunological behaviour of mature C57BL-6J mice thymectomized at birth. Immunology 8 (5): 526-528.
[22]  Small, D.M. (1991). The effects of glyceride structure on absorption and metabolism. Annual Review of Nutrition 11: 413-434.
[23]  Cederberg, H. and Laakso, M. (2014). Chapter 49: Obesity and Type 2 Diabetes. In Handbook of Obesity: Epidemiology, Etiology, and Physiopathology, Bray, G.A. and Bouchard, C., Ed. 2014; Vol. 1. pp 539-548.
[24]  Manninen, A.H. (2004). Metabolic effects of the very-low-carbohydrate diets: Misunderstood “Villains” of human metabolism. Journal of International Society of Sports Nutrition 1 (2): 7-11.
[25]  Carey, M.C., Small, D.M. and Bliss, C.M. (1983). Lipid digestion and absorption. Annual Review of Physiology 45: 651-677.
[26]  Verdonk, G., Christophe, A., Mortelmans, R. and Vandevivere, D. (1978). Chapter 18: Possibilities of semi-synthetic fats for human nutrition and dietetics: New concepts in the physio-pathology of lipid assimilation. In The Pharmacological Effect of Lipids, Kabara, J.J., Ed. 1978; pp191-202.
[27]  Sacco, M.R., Castro, N.P., Euclydes, V.L., Souza, J.M. and Rondo, P.H. (2013). Birth weight, rapid weight gain in infancy and markers of overweight and obesity in childhood. European Journal of Clinical Nutrition 67 (11): 1147-1153.
[28]  Mattson, F.H. and Volpenhein, R.A. (1964). The digestion and absorption in triglycerides. Journal of Biological Chemistry 239 (9): 2772-2777.
[29]  Mattson, F.H., Nolen, G.A. and Webb, M.R. (1979). The absorbability by rats of various triglycerides of stearic and oleic acid and the effect of dietary calcium and magnesium. Journal of Nutrition 109 (10): 1682-1687.
[30]  Brink, E.J., Haddeman, E., Fouw, N.J. and Weststrate, J.A. (1995). Positional distribution of stearic acid and oleic acid in a triacylglycerol and dietary calcium concentration determines the apparent absorption of these fatty acids in rats. Journal of Nutrition 125 (9): 2379-2387.
[31]  Lehner, R. and Kuksis, A. (1996). Biosynthesis of triacylglycerols. Prog. Lipid Res. 35 (2): 169-201.
[32]  Gurr, M.I. (2013). Chapter 1: The chemistry and biochemistry of plant fats and their nutritional importance. In Fats in Animal Nutrition, Wiseman, J., Ed. 2013; pp 3-22.
[33]  Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., G.J., R., Campfield, L.A., Clark, F.T., Deeds, J., Muir, C., Sanker, S., Moriarty, A., Moore, K.J., Smutko, J.S., Mays, G.G., Wool, E.A., Monroe, C.A. and Tepper, R.I. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell Press 83 (7): 1263-1271.
[34]  Chen, H., Charlat, O., Tartaglia, L.A., Woolf, E.A., Weng, X., Ellis, S.J., Lakey, N.D., Culpepper, J., Moore, K.J., Breitbart, R.E., Duyk, G.M., Tepper, R.I. and Morgenstern, J.P. (1996). Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell Press 84 (3): 491-495.
[35]  Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, M.R., Ohannesian, J.P., Marco, C.C., McKee, L.J., Bauer, T.L. and et al. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New England Journal of Medicine 334 (5): 292-295.