[1] | Hwang, J.H., K.J. Kim, S.J. Ryu, and B.Y. Lee, Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chemico-biological interactions, 2016. 248: p. 1-7. |
|
[2] | Cho, H.J., M.R. Seon, Y.M. Lee, J. Kim, J.K. Kim, S.G. Kim, and J.H. Park, 3,3'-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. The Journal of nutrition, 2008. 138(1): p. 17-23. |
|
[3] | Hofseth, L.J. and L. Ying, Identifying and defusing weapons of mass inflammation in carcinogenesis. Biochimica et biophysica acta, 2006. 1765(1): p. 74-84. |
|
[4] | Takeuchi, O. and S. Akira, Pattern recognition receptors and inflammation. Cell, 2010. 140(6): p. 805-20. |
|
[5] | Kawai, T. and S. Akira, TLR signaling. Cell death and differentiation, 2006. 13(5): p. 816-25. |
|
[6] | Lu, Y.C., W.C. Yeh, and P.S. Ohashi, LPS/TLR4 signal transduction pathway. Cytokine, 2008. 42(2): p. 145-51. |
|
[7] | Takeda, K. and S. Akira, TLR signaling pathways. Seminars in immunology, 2004. 16(1): p. 3-9. |
|
[8] | Wieland, C.W., S. Florquin, N.A. Maris, K. Hoebe, B. Beutler, K. Takeda, S. Akira, and T. van der Poll, The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable haemophilus influenzae from the mouse lung. The Journal of Immunology, 2005. 175(9): p. 6042-6049. |
|
[9] | Huang, P., J. Han, and L. Hui, MAPK signaling in inflammation-associated cancer development. Protein & cell, 2010. 1(3): p. 218-26. |
|
[10] | Wagner, E.F. and A.R. Nebreda, Signal integration by JNK and p38 MAPK pathways in cancer development. Nature reviews. Cancer, 2009. 9(8): p. 537-49. |
|
[11] | Karin, M., Y. Yamamoto, and Q.M. Wang, The IKK NF-kappa B system: a treasure trove for drug development. Nature reviews. Drug discovery, 2004. 3(1): p. 17-26. |
|
[12] | Choi, J., K.J. Kim, B.H. Kim, E.J. Koh, M.J. Seo, and B.Y. Lee, 6-Gingerol Suppresses Adipocyte-Derived Mediators of Inflammation In Vitro and in High-Fat Diet-Induced Obese Zebra Fish. Planta medica, 2017. 83(3-04): p. 245-253. |
|
[13] | Yun, C.S., Y.G. Choi, M.Y. Jeong, J.H. Lee, and S. Lim, Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts. Journal of natural medicines, 2013. 67(3): p. 576-89. |
|
[14] | Jang, M.H., K.Y. Kim, P.H. Song, S.Y. Baek, H.L. Seo, E.H. Lee, S.G. Lee, K.I. Park, S.C. Ahn, S.C. Kim, and Y.W. Kim, Moutan Cortex Protects Hepatocytes against Oxidative Injury through AMP-Activated Protein Kinase Pathway. Biological & pharmaceutical bulletin, 2017. 40(6): p. 797-806. |
|
[15] | Mao, Q.Q., X.M. Zhong, C.R. Feng, A.J. Pan, Z.Y. Li, and Z. Huang, Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca(2+) antagonism. Cellular and molecular neurobiology, 2010. 30(7): p. 1059-66. |
|
[16] | Liu, D.Z., K.Q. Xie, X.Q. Ji, Y. Ye, C.L. Jiang, and X.Z. Zhu, Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. British journal of pharmacology, 2005. 146(4): p. 604-11. |
|
[17] | Katsuyama, K., M. Shichiri, F. Marumo, and Y. Hirata, NO inhibits cytokine-induced iNOS expression and NF-kappaB activation by interfering with phosphorylation and degradation of IkappaB-alpha. Arteriosclerosis, thrombosis, and vascular biology, 1998. 18(11): p. 1796-802. |
|
[18] | Takeda, K. and S. Akira, Toll-like receptors in innate immunity. International immunology, 2005. 17(1): p. 1-14. |
|
[19] | Barton, G.M. and R. Medzhitov, Toll-like receptor signaling pathways. Science, 2003. 300(5625): p. 1524-5. |
|
[20] | Hwang, J.H., K.J. Kim, and B.Y. Lee, Crude Ecklonia cava Flake Extracts Attenuate Inflammation through the Regulation of TLR4 Signaling Pathway in LPS-Induced RAW264.7 Cells. Molecules, 2017. 22(5). |
|
[21] | Cheng, P., T. Wang, W. Li, I. Muhammad, H. Wang, X. Sun, Y. Yang, J. Li, T. Xiao, and X. Zhang, Baicalin Alleviates Lipopolysaccharide-Induced Liver Inflammation in Chicken by Suppressing TLR4-Mediated NF-kappaB Pathway. Frontiers in pharmacology, 2017. 8: p. 547. |
|
[22] | Tak, P.P. and G.S. Firestein, NF-kappaB: a key role in inflammatory diseases. The Journal of clinical investigation, 2001. 107(1): p. 7-11. |
|
[23] | Vanden Berghe, W., S. Plaisance, E. Boone, K. De Bosscher, M.L. Schmitz, W. Fiers, and G. Haegeman, p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. The Journal of biological chemistry, 1998. 273(6): p. 3285-90. |
|